Design of compliant mechanism using hyper radial basis function network and reanalysis formulation

被引:1
|
作者
Apte, Aditya P. [1 ,2 ]
Wang, Bo Ping [3 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10065 USA
[2] Univ Texas Arlington, Dept Mech Engn, Arlington, TX 76019 USA
[3] Univ Texas Arlington, Dept Mech & Aerosp Engn, Arlington, TX 76019 USA
关键词
Compliant mechanism; Global optimal solution; Reanalysis formulation; TOPOLOGY OPTIMIZATION; STRUCTURAL REANALYSIS; ALGORITHM;
D O I
10.1007/s00158-010-0580-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The design of compliant mechanisms often involves multiple minima. Since non-gradient type global optimization techniques cannot handle as many design variables as the commonly used, gradient based SIMP method, a hyper radial basis function network is used in this paper for Particle Swarm Optimization. An exact reanalysis formulation is presented which computes the strain energy from the solution of the mutual energy problem. The design of motion inverter is presented to demonstrate the proposed approach. The use of hyper radial basis function network results in checkerboard-free, smooth topology using very crude finite element analysis mesh, whereas the reanalysis formulation cuts down the analysis time into half. Thus the design process is made computationally efficient and less dependent on human interpretation of the optimal topology.
引用
收藏
页码:529 / 539
页数:11
相关论文
共 50 条
  • [41] A radial basis function network (RBFN) for function approximation
    Lucks, MB
    Oki, N
    [J]. 42ND MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, PROCEEDINGS, VOLS 1 AND 2, 1999, : 1099 - 1101
  • [42] Radar target recognition using a radial basis function neural network
    Zhao, Q
    Bao, Z
    [J]. NEURAL NETWORKS, 1996, 9 (04) : 709 - 720
  • [43] Adaptive domain beamforming for OFDM using radial basis function network
    Wu, Yucheng
    Ren, Guangxi
    Zhao, Wengang
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON INTEGRATION TECHNOLOGY, PROCEEDINGS, 2007, : 63 - +
  • [44] Biometric iris recognition using radial basis function neural network
    Dua, Megha
    Gupta, Rashmi
    Khari, Manju
    Crespo, Ruben Gonzalez
    [J]. SOFT COMPUTING, 2019, 23 (22) : 11801 - 11815
  • [45] Rotorcraft parameter estimation using radial basis function neural network
    Kumar, Rajan
    Ganguli, Ranjan
    Omkar, S. N.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (02) : 584 - 597
  • [46] Blind equalization using a predictive radial basis function neural network
    Xie, N
    Leung, H
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2005, 16 (03): : 709 - 720
  • [47] EMG Signal Classification Using Radial Basis Function Neural Network
    AlKhazzar, Ahmed Mohammed
    Raheema, Mithaq Nama
    [J]. 2018 THIRD SCIENTIFIC CONFERENCE OF ELECTRICAL ENGINEERING (SCEE), 2018, : 180 - 185
  • [48] Face detection using a modified radial basis function neural network
    Huang, LL
    Shimizu, A
    Kobatake, H
    [J]. 16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL II, PROCEEDINGS, 2002, : 342 - 345
  • [49] Chinese Minority Script Recognition Using Radial Basis Function Network
    Guo, Hai
    Zhao, Jing-ying
    [J]. JOURNAL OF COMPUTERS, 2010, 5 (06) : 927 - 934
  • [50] Rotor Time Constant Adaptation Using Radial Basis Function Network
    Brandstetter, Pavel
    Skuta, Ondrej
    [J]. 2008 13TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE, VOLS 1-5, 2008, : 1375 - 1381