A Hierarchical Predictor of Synthetic Speech Naturalness Using Neural Networks

被引:19
|
作者
Yoshimura, Takenori [1 ]
Henter, Gustav Eje [2 ]
Watts, Oliver [2 ]
Wester, Mirjam [2 ]
Yamagishi, Junichi [2 ,3 ]
Tokuda, Keiichi [1 ]
机构
[1] Nagoya Inst Technol, Dept Sci & Engn Simulat, Nagoya, Aichi, Japan
[2] Univ Edinburgh, Ctr Speech Technol Res, Edinburgh, Midlothian, Scotland
[3] Natl Inst Informat, Tokyo, Japan
基金
英国工程与自然科学研究理事会; 日本科学技术振兴机构;
关键词
speech synthesis; naturalness; neural network; Blizzard Challenge;
D O I
10.21437/Interspeech.2016-847
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A problem when developing and tuning speech synthesis systems is that there is no well-established method of automatically rating the quality of the synthetic speech. This research attempts to obtain a new automated measure which is trained on the result of large-scale subjective evaluations employing many human listeners, i.e., the Blizzard Challenge. To exploit the data, we experiment with linear regression, feed-forward and convolutional neural network models, and combinations of them to regress from synthetic speech to the perceptual scores obtained from listeners. The biggest improvements were seen when combining stimulus- and system-level predictions.
引用
收藏
页码:342 / 346
页数:5
相关论文
共 50 条
  • [41] Nonlinear principal predictor analysis using neural networks
    Cannon, AJ
    [J]. Proceedings of the International Joint Conference on Neural Networks (IJCNN), Vols 1-5, 2005, : 1630 - 1635
  • [42] SPEECH ASSISTANCE FOR PERSONS WITH SPEECH IMPEDIMENTS USING ARTIFICIAL NEURAL NETWORKS
    Mounir, Ramy
    Alqasemi, Redwan
    Dubey, Rajiv
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2017, VOL 3, 2018,
  • [43] HIERARCHICAL NEURAL NETWORKS
    MAVROVOUNIOTIS, ML
    CHANG, S
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 1992, 16 (04) : 347 - 369
  • [44] Speech Signal Processing Using Neural Networks Mapping the phonology of Sanskrit language using Neural Networks
    Surampudi, Sriniwas Govinda
    Pal, Ritu
    [J]. 2015 IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC), 2015, : 660 - 665
  • [45] Brain volumes characterisation using hierarchical neural networks
    Di Bona, S
    Niemann, H
    Pieri, G
    Salvetti, O
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2003, 28 (03) : 307 - 322
  • [46] Modulation Recognition Using Hierarchical Deep Neural Networks
    Karra, Krishna
    Kuzdeba, Scott
    Petersen, Josh
    [J]. 2017 IEEE INTERNATIONAL SYMPOSIUM ON DYNAMIC SPECTRUM ACCESS NETWORKS (IEEE DYSPAN), 2017,
  • [47] Hierarchical Data Classification Using Deep Neural Networks
    Tirumala, Sreenivas Sremath
    Narayanan, A.
    [J]. NEURAL INFORMATION PROCESSING, PT I, 2015, 9489 : 492 - 500
  • [48] A Fuzzy Modelling Approach Using Hierarchical Neural Networks
    M.-Y. Chen
    D.A. Linkens
    [J]. Neural Computing & Applications, 2000, 9 : 44 - 49
  • [49] A fuzzy modelling approach using hierarchical neural networks
    Chen, MY
    Linkens, DA
    [J]. NEURAL COMPUTING & APPLICATIONS, 2000, 9 (01): : 44 - 49
  • [50] Hierarchical classification of object images using neural networks
    Kim, Jong-Ho
    Lee, Jae-Won
    Kang, Byoung-Doo
    Kwon, O-Hwa
    Seong, Chi-Young
    Kim, Sang-Kyoon
    Park, Se-Myung
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 2, PROCEEDINGS, 2006, 3972 : 322 - 330