Modulation Recognition Using Hierarchical Deep Neural Networks

被引:0
|
作者
Karra, Krishna [1 ]
Kuzdeba, Scott [1 ]
Petersen, Josh [1 ]
机构
[1] BAE Syst Technol Solut, Rockville, MD 20850 USA
关键词
modulation recognition; communications; machine learning; deep learning; neural network; hierarchical classification;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We outline the core components of a modulation recognition system that uses hierarchical deep neural networks to identify data type, modulation class and modulation order. Our system utilizes a flexible front-end detector that performs energy detection, channelization and multi-band reconstruction on wideband data to provide raw narrowband signal snapshots. We automatically extract features from these snapshots using convolutional neural network layers, which produce decision class estimates. Initial experimentation on a small synthetic radio frequency dataset indicates the viability of deep neural networks applied to the communications domain. We plan to demonstrate this system at the Battle of the Mod Recs Workshop at IEEE DySpan 2017.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Pattern Recognition of Modulation Signal Classification Using Deep Neural Networks
    Venugopal, D.
    Mohan, V
    Ramesh, S.
    Janupriya, S.
    Lim, Sangsoon
    Kadry, Seifedine
    [J]. COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 43 (02): : 545 - 558
  • [2] Face recognition using hierarchical neural networks
    Huang, YH
    Liou, CJ
    Wu, ST
    Chen, LG
    Chiueh, TD
    [J]. PROCEEDINGS OF THE INTERNATIONAL WORKSHOP ON APPLICATIONS OF NEURAL NETWORKS TO TELECOMMUNICATIONS 3, 1997, 3 : 181 - 188
  • [3] Modulation spectral features for speech emotion recognition using deep neural networks
    Singh, Premjeet
    Sahidullah, Md
    Saha, Goutam
    [J]. SPEECH COMMUNICATION, 2023, 146 : 53 - 69
  • [4] Modulation Recognition of Underwater Acoustic Signals Using Deep Hybrid Neural Networks
    Zhang, Weilong
    Yang, Xinghai
    Leng, Changli
    Wang, Jingjing
    Mao, Shiwen
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (08) : 5977 - 5988
  • [5] Modulation recognition using artificial neural networks
    Nandi, AK
    Azzouz, EE
    [J]. SIGNAL PROCESSING, 1997, 56 (02) : 165 - 175
  • [6] Adversarial Attacks on Deep Neural Networks Based Modulation Recognition
    Liu, Mingqian
    Zhang, Zhenju
    Zhao, Nan
    Chen, Yunfei
    [J]. IEEE INFOCOM 2022 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2022,
  • [7] Human gait recognition using joint spatiotemporal modulation in deep convolutional neural networks
    Junaid, Mohammad Iman
    Prakash, Allam Jaya
    Ari, Samit
    [J]. Journal of Visual Communication and Image Representation, 2024, 105
  • [8] Monument Recognition using Deep Neural Networks
    Gada, Siddhant
    Mehta, Viraj
    Kanchan, Karan
    Jain, Chahat
    Raut, Purva
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (ICCIC), 2017, : 645 - 650
  • [9] Face Recognition using Deep Neural Networks
    Dastgiri, Amirhosein
    Jafarinamin, Pouria
    Kamarbaste, Sami
    Gholizade, Mahdi
    [J]. JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, 2019, 14 (03): : 510 - 527
  • [10] Hierarchical Data Classification Using Deep Neural Networks
    Tirumala, Sreenivas Sremath
    Narayanan, A.
    [J]. NEURAL INFORMATION PROCESSING, PT I, 2015, 9489 : 492 - 500