An aggregation-based domain decomposition preconditioner for groundwater flow

被引:35
|
作者
Jenkins, EW
Kees, CE
Kelley, CT
Miller, CT
机构
[1] Univ Texas, TICAM, Austin, TX 78712 USA
[2] Univ N Carolina, Dept Environm Sci & Engn, Chapel Hill, NC 27599 USA
[3] N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
[4] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2001年 / 23卷 / 02期
关键词
domain decomposition; Newton-Krylov-Schwarz methods; Richards' equation; nonlinear equations; aggregation;
D O I
10.1137/S1064827500372274
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider theoretical and computational issues associated with an aggregation-based domain decomposition preconditioner applied to a Bi-CGSTAB iterative solver used to solve both Laplace's equation and an important nonlinear model from hydrology used to simulate unsaturated flow, Richards equation. Theoretical results for Laplace's equation provide estimates of the condition number and the rate of convergence for a two-level Schwarz domain decomposition preconditioner. Computational results for Laplace's equation and Richards' equation show excellent scalability, although no theory is yet available to support the results for the difficult nonlinear problem.
引用
收藏
页码:430 / 441
页数:12
相关论文
共 50 条
  • [1] A domain decomposition preconditioner for steady groundwater flow in porous media
    N. Ghahreman
    A. Kerayechian
    Korean journal of computational & applied mathematics, 2000, 7 (3): : 541 - 553
  • [2] An improved convergence bound for aggregation-based domain decomposition preconditioners
    Sala, M
    Shadid, JN
    Tuminaro, RS
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2005, 27 (03) : 744 - 756
  • [3] Adaptive aggregation-based domain decomposition multigrid for twisted mass fermions
    Alexandrou, Constantia
    Bacchio, Simone
    Finkenrath, Jacob
    Frommer, Andreas
    Kahl, Karsten
    Rottmann, Matthias
    PHYSICAL REVIEW D, 2016, 94 (11)
  • [4] ADAPTIVE AGGREGATION-BASED DOMAIN DECOMPOSITION MULTIGRID FOR THE LATTICE WILSON-DIRAC OPERATOR
    Frommer, A.
    Kahl, K.
    Krieg, S.
    Leder, B.
    Rottmann, M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (04): : A1581 - A1608
  • [5] A Multi-GPU Aggregation-Based AMG Preconditioner for Iterative Linear Solvers
    Bernaschi, Massimo
    Celestini, Alessandro
    Vella, Flavio
    D'Ambra, Pasqua
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2023, 34 (08) : 2365 - 2376
  • [6] Aggregation-based decomposition for multi-divisional models
    Litvinchev, IS
    Silva, GN
    Treskov, YP
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 1999, 38 (02) : 244 - 254
  • [7] Root-Power Mean Aggregation-Based Neuron in Quaternionic Domain
    Kumar, Sushil
    Tripathi, Bipin Kumar
    IETE JOURNAL OF RESEARCH, 2019, 65 (04) : 557 - 575
  • [8] A DOMAIN DECOMPOSITION PRECONDITIONER BASED ON A CHANGE TO A MULTILEVEL NODAL BASIS
    TONG, CH
    CHAN, TF
    KUO, CCJ
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1991, 12 (06): : 1486 - 1495
  • [9] Analysis of aggregation-based multigrid
    Muresan, Adrian C.
    Notay, Yvan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (02): : 1082 - 1103
  • [10] A Robust Multilevel Preconditioner Based on a Domain Decomposition Method for the Helmholtz Equation
    Peipei Lu
    Xuejun Xu
    Journal of Scientific Computing, 2019, 81 : 291 - 311