An aggregation-based domain decomposition preconditioner for groundwater flow

被引:35
|
作者
Jenkins, EW
Kees, CE
Kelley, CT
Miller, CT
机构
[1] Univ Texas, TICAM, Austin, TX 78712 USA
[2] Univ N Carolina, Dept Environm Sci & Engn, Chapel Hill, NC 27599 USA
[3] N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
[4] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2001年 / 23卷 / 02期
关键词
domain decomposition; Newton-Krylov-Schwarz methods; Richards' equation; nonlinear equations; aggregation;
D O I
10.1137/S1064827500372274
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider theoretical and computational issues associated with an aggregation-based domain decomposition preconditioner applied to a Bi-CGSTAB iterative solver used to solve both Laplace's equation and an important nonlinear model from hydrology used to simulate unsaturated flow, Richards equation. Theoretical results for Laplace's equation provide estimates of the condition number and the rate of convergence for a two-level Schwarz domain decomposition preconditioner. Computational results for Laplace's equation and Richards' equation show excellent scalability, although no theory is yet available to support the results for the difficult nonlinear problem.
引用
收藏
页码:430 / 441
页数:12
相关论文
共 50 条
  • [21] Aggregation-based QoS routing in the internet
    Hou R.
    Leung K.-C.
    Lui K.-S.
    Leung K.-C.
    Baker F.
    Journal of Communications, 2010, 5 (03): : 239 - 246
  • [22] Algebraic analysis of aggregation-based multigrid
    Napov, Artem
    Notay, Yvan
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2011, 18 (03) : 539 - 564
  • [23] Aggregation-based algebraic multilevel preconditioning
    Notay, Y
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2006, 27 (04) : 998 - 1018
  • [24] Aggregation-based extensions of fuzzy measures
    Kolesarova, Anna
    Stupnanova, Andrea
    Beganova, Juliana
    FUZZY SETS AND SYSTEMS, 2012, 194 : 1 - 14
  • [25] APPLICATION OF PARALLEL AGGREGATION-BASED MULTIGRID TO HIGH RESOLUTION SUBSURFACE FLOW SIMULATIONS
    Chen, Menghuo
    Sun, Shuyu
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2019, 16 (06) : 873 - 890
  • [26] An improved sweeping domain decomposition preconditioner for the Helmholtz equation
    Stolk, Christiaan C.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2017, 43 (01) : 45 - 76
  • [27] A domain decomposition preconditioner for an advection-diffusion problem
    Achdou, Y
    Le Tallec, P
    Nataf, F
    Vidrascu, M
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 184 (2-4) : 145 - 170
  • [28] TempoGRAPHer: Aggregation-Based Temporal Graph Exploration
    Tsoukanara, Evangelia
    Koloniari, Georgia
    Pitoura, Evaggelia
    INFORMATION, 2025, 16 (01)
  • [29] An Aggregation-based Raw Reputation Generation Approach
    Zhang Jianzhong
    Zhang Tianyan
    Lan Xiaofeng
    Xu Jingdong
    NAS: 2009 IEEE INTERNATIONAL CONFERENCE ON NETWORKING, ARCHITECTURE, AND STORAGE, 2009, : 109 - 113
  • [30] A PRECONDITIONER FOR DOMAIN DECOMPOSITION METHODS WITH MORTAR LAGRANGE MULTIPLIERS
    HU Qiyia(Institute of Computational Mathematics and Scientific/Engineering Computing
    College ofMathematics and Quantity Economy
    Journal of Systems Science & Complexity, 2002, (04) : 384 - 395