ADAPTIVE AGGREGATION-BASED DOMAIN DECOMPOSITION MULTIGRID FOR THE LATTICE WILSON-DIRAC OPERATOR

被引:77
|
作者
Frommer, A. [1 ]
Kahl, K. [1 ]
Krieg, S. [2 ,3 ]
Leder, B. [1 ]
Rottmann, M. [1 ]
机构
[1] Berg Univ Wuppertal, Dept Math, D-42097 Wuppertal, Germany
[2] Berg Univ Wuppertal, Dept Phys, D-42097 Wuppertal, Germany
[3] Forschungszentrum Julich, Julich Supercomp Ctr, D-52428 Julich, Germany
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2014年 / 36卷 / 04期
关键词
multilevel; multigrid; lattice QCD; Wilson-Dirac operator; domain decomposition; aggregation; adaptivity; parallel computing; KRYLOV SUBSPACE METHODS; ALPHA-SA; QCD; MASS;
D O I
10.1137/130919507
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In lattice quantum chromodynamics (QCD) computations a substantial amount of work is spent in solving discretized versions of the Dirac equation. Conventional Krylov solvers show critical slowing down for large system sizes and physically interesting parameter regions. We present a domain decomposition adaptive algebraic multigrid method used as a preconditioner to solve the "clover improved" Wilson discretization of the Dirac equation. This approach combines and improves two approaches, namely domain decomposition and adaptive algebraic multigrid, that have been used separately in lattice QCD before. We show in extensive numerical tests conducted with a parallel production code implementation that considerable speedup can be achieved compared to conventional Krylov subspace methods, domain decomposition methods, and other hierarchical approaches for realistic system sizes.
引用
收藏
页码:A1581 / A1608
页数:28
相关论文
共 50 条
  • [1] Adaptive Multigrid Algorithm for the Lattice Wilson-Dirac Operator
    Babich, R.
    Brannick, J.
    Brower, R. C.
    Clark, M. A.
    Manteuffel, T. A.
    McCormick, S. F.
    Osborn, J. C.
    Rebbi, C.
    PHYSICAL REVIEW LETTERS, 2010, 105 (20)
  • [2] A multigrid accelerated eigensolver for the Hermitian Wilson-Dirac operator in lattice QCD
    Frommer, Andreas
    Kahl, Karsten
    Knechtli, Francesco
    Rottmann, Matthias
    Strebel, Artur
    Zwaan, Ian
    COMPUTER PHYSICS COMMUNICATIONS, 2021, 258
  • [3] Adaptive aggregation-based domain decomposition multigrid for twisted mass fermions
    Alexandrou, Constantia
    Bacchio, Simone
    Finkenrath, Jacob
    Frommer, Andreas
    Kahl, Karsten
    Rottmann, Matthias
    PHYSICAL REVIEW D, 2016, 94 (11)
  • [4] General bounds on the Wilson-Dirac operator
    Adams, DH
    PHYSICAL REVIEW D, 2003, 68 (06)
  • [5] Dirac spectrum of the Wilson-Dirac operator for QCD with two colors
    Kieburg, Mario
    Verbaarschot, Jacobus J. M.
    Zafeiropoulos, Savvas
    PHYSICAL REVIEW D, 2015, 92 (04):
  • [6] An Operator Smoothing with ILU(0) for Aggregation-based Algebraic Multigrid
    Wu, Jian-ping
    Sun, Liang
    2018 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL MODELING, SIMULATION AND APPLIED MATHEMATICS (CMSAM 2018), 2018, 310 : 224 - 230
  • [7] Discretization errors in the spectrum of the Hermitian Wilson-Dirac operator
    Sharpe, Stephen R.
    PHYSICAL REVIEW D, 2006, 74 (01):
  • [8] On the spectrum of the Wilson-Dirac lattice operator in topologically non-trivial background configurations
    Gattringer, C
    Hip, I
    NUCLEAR PHYSICS B, 1998, 536 (1-2) : 363 - 380
  • [9] Implementing Wilson-Dirac Operator on the Cell Broadband Engine
    Ibrahim, Khaled Z.
    Bodin, Francois
    ICS'08: PROCEEDINGS OF THE 2008 ACM INTERNATIONAL CONFERENCE ON SUPERCOMPUTING, 2008, : 4 - 14
  • [10] Analysis of aggregation-based multigrid
    Muresan, Adrian C.
    Notay, Yvan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (02): : 1082 - 1103