Fine Control of In Vivo Magnetic Hyperthermia Using Iron Oxide Nanoparticles with Different Coatings and Degree of Aggregation

被引:12
|
作者
Luengo, Yurena [1 ]
Diaz-Riascos, Zamira V. [2 ,3 ,4 ]
Garcia-Soriano, David [1 ]
Teran, Francisco J. [1 ,5 ,6 ]
Artes-Ibanez, Emilio J. [1 ]
Ibarrola, Oihane [7 ]
Somoza, Alvaro [1 ,5 ,6 ]
Miranda, Rodolfo [1 ,5 ,6 ]
Schwartz, Simo, Jr. [2 ,4 ]
Abasolo, Ibane [2 ,3 ,4 ]
Salas, Gorka [1 ,5 ,6 ]
机构
[1] Campus Univ Cantoblanco, IMDEA Nanociencia, Madrid 28049, Spain
[2] Univ Autonoma Barcelona, Vall Hebron Inst Recerca VHIR, Drug Delivery & Targeting, Barcelona 08035, Spain
[3] Univ Autonoma Barcelona, Vall Hebron Inst Recerca VHIR, Funct Validat & Preclin Res, Barcelona 08035, Spain
[4] CIBER Bioingn, Biomat & Nanomed CIBER BBN, Monforte Lemos 3-5, Madrid 28029, Spain
[5] CSIC, Unidad Asociada Nanobiotecnol, CNB, Madrid 28049, Spain
[6] IMDEA Nanociencia, Madrid 28049, Spain
[7] Biokeralty Res Inst AIE, Arkaute 5, Vitoria 01510, Spain
关键词
magnetic hyperthermia; cancer; nanoparticles; controlled heat in vivo; EFFICIENCY; TRANSLATION;
D O I
10.3390/pharmaceutics14081526
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The clinical implementation of magnetic hyperthermia has experienced little progress since the first clinical trial was completed in 2005. Some of the hurdles to overcome are the reliable production of magnetic nanoparticles with controlled properties and the control of the temperature at the target tissue in vivo. Here, forty samples of iron oxide superparamagnetic nanoparticles were prepared by similar methods and thoroughly characterized in terms of size, aggregation degree, and heating response. Selected samples were intratumorally administered in animals with subcutaneous xenografts of human pancreatic cancer. In vivo experiments showed that it is possible to control the rise in temperature by modulating the field intensity during in vivo magnetic hyperthermia protocols. The procedure does not require sophisticated materials and it can be easily implemented by researchers or practitioners working in magnetic hyperthermia therapies.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Water dispersible superparamagnetic Cobalt iron oxide nanoparticles for magnetic fluid hyperthermia
    Salunkhe, Ashwini B.
    Khot, Vishwajeet M.
    Ruso, Juan M.
    Patil, S. I.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 419 : 533 - 542
  • [32] Manganese Iron Oxide Nanoparticles for Magnetic Hyperthermia, Antibacterial and ROS Generation Performance
    Sagar A. Patil
    Tanjila C. Gavandi
    Maithili V. Londhe
    Ashwini B. Salunkhe
    Ashwini K. Jadhav
    Vishwajeet M. Khot
    Journal of Cluster Science, 2024, 35 : 1405 - 1415
  • [33] Carboxylic acid-stabilised iron oxide nanoparticles for use in magnetic hyperthermia
    Thomas, Luanne A.
    Dekker, Linda
    Kallumadil, Mathew
    Southern, Paul
    Wilson, Michael
    Nair, Sean P.
    Pankhurst, Quentin A.
    Parkin, Ivan P.
    JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (36) : 6529 - 6535
  • [34] Magnetic Relaxation of Agglomerated and Immobilized Iron Oxide Nanoparticles for Hyperthermia and Imaging Applications
    Engelmann, Ulrich Michael
    Buhl, Eva Miriam
    Draack, Sebastian
    Viereck, Thilo
    Ludwig, Frank
    Schmitz-Rode, Thomas
    Slabu, Ioana
    IEEE MAGNETICS LETTERS, 2018, 9
  • [35] Manganese Iron Oxide Nanoparticles for Magnetic Hyperthermia, Antibacterial and ROS Generation Performance
    Patil, Sagar A.
    Gavandi, Tanjila C.
    Londhe, Maithili V.
    Salunkhe, Ashwini B.
    Jadhav, Ashwini K.
    Khot, Vishwajeet M.
    JOURNAL OF CLUSTER SCIENCE, 2024, 35 (05) : 1405 - 1415
  • [36] Carbothermal treated iron oxide nanoparticles with improving magnetic heating efficiency for hyperthermia
    Zuo, Xudong
    Ding, Hao
    Zhang, Jiandong
    Fang, Tao
    Zhang, Dongmei
    RESULTS IN PHYSICS, 2022, 32
  • [37] Superparamagnetic Iron Oxide Nanoparticles for Immunotherapy of Cancers through Macrophages and Magnetic Hyperthermia
    Dias, Alexandre M. M.
    Courteau, Alan
    Bellaye, Pierre-Simon
    Kohli, Evelyne
    Oudot, Alexandra
    Doulain, Pierre-Emmanuel
    Petitot, Camille
    Walker, Paul-Michael
    Decreau, Richard
    Collin, Bertrand
    PHARMACEUTICS, 2022, 14 (11)
  • [38] Magnetic targeting with superparamagnetic iron oxide nanoparticles for in vivo glioma
    de Paula Aguiar, Marina Fontes
    Mamani, Javier Bustamante
    Felix, Taylla Klei
    dos Reis, Rafael Ferreira
    da Silva, Helio Rodrigues
    Nucci, Leopoldo Penteado
    Nucci-da-Silva, Mariana Penteado
    Gamarra, Lionel Fernel
    NANOTECHNOLOGY REVIEWS, 2017, 6 (05) : 449 - 472
  • [39] Magnetic resonance imaging contrast of iron oxide nanoparticles developed for hyperthermia is dominated by iron content
    Wabler, Michele
    Zhu, Wenlian
    Hedayati, Mohammad
    Attaluri, Anilchandra
    Zhou, Haoming
    Mihalic, Jana
    Geyh, Alison
    DeWeese, Theodore L.
    Ivkov, Robert
    Artemov, Dmitri
    INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2014, 30 (03) : 192 - 200
  • [40] Development of Hyperthermia Treatments for Malignant Melanoma using Superparamagnetic Iron Oxide Nanoparticles in a Novel Transgenic In Vivo Model
    Oxenham, T.
    Southern, P.
    Briesemeister, D.
    Freeman, A.
    Peggs, K.
    Pankhurst, Q.
    Quezada, S.
    Chester, K.
    JOURNAL DER DEUTSCHEN DERMATOLOGISCHEN GESELLSCHAFT, 2013, 11 : 58 - 58