Bayesian image reconstruction based on Voronoi diagrams

被引:6
|
作者
Cabrera, G. F. [1 ,2 ]
Casassus, S.
Hitschfeld, N. [2 ]
机构
[1] Univ Chile, Dept Astron, Santiago, Chile
[2] Univ Chile, Dept Ciencias Computac, Santiago, Chile
来源
ASTROPHYSICAL JOURNAL | 2008年 / 672卷 / 02期
关键词
methods : data analysis; methods : numerical; methods : statistical; techniques : image processing; techniques : interferometric;
D O I
10.1086/523961
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a Bayesian Voronoi image reconstruction ( VIR) technique for interferometric data. Bayesian analysis applied to the inverse problem allows us to derive the a posteriori probability of a novel parameterization of interferometric images. We use a variable Voronoi diagram as our model in place of the usual fixed-pixel grid. A quantization of the intensity field allows us to calculate the likelihood function and a priori probabilities. The Voronoi image is optimized including the number of polygons as free parameters. We apply our algorithm to deconvolve simulated interferometric data. Residuals, restored images, and chi(2) values are used to compare our reconstructions with fixed-grid models. VIR has the advantage of modeling the image with few parameters, obtaining a better image from a Bayesian point of view.
引用
收藏
页码:1272 / 1285
页数:14
相关论文
共 50 条
  • [41] Bayesian image superresolution for hyperspectral image reconstruction
    Murayama, Yusuke
    Ide-Ektessabi, Ari
    COMPUTATIONAL IMAGING X, 2012, 8296
  • [42] Coloured Voronoi tessellations for Bayesian image analysis and reservoir modelling
    Moller, Jesper
    Skare, Oivind
    STATISTICAL MODELLING, 2001, 1 (03) : 213 - 232
  • [43] A Bayesian approach to image-based visual hull reconstruction
    Grauman, K
    Shakhnarovich, G
    Darrell, T
    2003 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2003, : 187 - 194
  • [44] Photoacoustic image reconstruction based on Bayesian compressive sensing algorithm
    孙明健
    冯乃章
    沈毅
    李建刚
    马立勇
    伍政华
    Chinese Optics Letters, 2011, 9 (06) : 44 - 47
  • [45] WAVELET BASED UNSUPERVISED VARIATIONAL BAYESIAN IMAGE RECONSTRUCTION APPROACH
    Zheng, Yuling
    Fraysse, Aurelia
    Rodet, Thomas
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 2167 - 2171
  • [46] SCORE-BASED DIFFUSION MODELS FOR BAYESIAN IMAGE RECONSTRUCTION
    McCann, Michael T.
    Chung, Hyungjin
    Ye, Jong Chul
    Klasky, Marc L.
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 111 - 115
  • [47] On the Relations Between SINR Diagrams and Voronoi Diagrams
    Parter, Merav
    Peleg, David
    AD-HOC, MOBILE, AND WIRELESS NETWORKS, 2015, 9143 : 225 - 237
  • [48] Sorting helps for Voronoi diagrams
    Chew, LP
    Fortune, S
    ALGORITHMICA, 1997, 18 (02) : 217 - 228
  • [49] ON THE CONSTRUCTION OF ABSTRACT VORONOI DIAGRAMS
    MEHLHORN, K
    STMEISER
    DUNLAING, C
    LECTURE NOTES IN COMPUTER SCIENCE, 1990, 415 : 227 - 239
  • [50] Abstract Voronoi diagrams revisited
    Klein, Rolf
    Langetepe, Elmar
    Nilforoushan, Zahra
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2009, 42 (09): : 885 - 902