Bayesian image reconstruction based on Voronoi diagrams

被引:6
|
作者
Cabrera, G. F. [1 ,2 ]
Casassus, S.
Hitschfeld, N. [2 ]
机构
[1] Univ Chile, Dept Astron, Santiago, Chile
[2] Univ Chile, Dept Ciencias Computac, Santiago, Chile
来源
ASTROPHYSICAL JOURNAL | 2008年 / 672卷 / 02期
关键词
methods : data analysis; methods : numerical; methods : statistical; techniques : image processing; techniques : interferometric;
D O I
10.1086/523961
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a Bayesian Voronoi image reconstruction ( VIR) technique for interferometric data. Bayesian analysis applied to the inverse problem allows us to derive the a posteriori probability of a novel parameterization of interferometric images. We use a variable Voronoi diagram as our model in place of the usual fixed-pixel grid. A quantization of the intensity field allows us to calculate the likelihood function and a priori probabilities. The Voronoi image is optimized including the number of polygons as free parameters. We apply our algorithm to deconvolve simulated interferometric data. Residuals, restored images, and chi(2) values are used to compare our reconstructions with fixed-grid models. VIR has the advantage of modeling the image with few parameters, obtaining a better image from a Bayesian point of view.
引用
收藏
页码:1272 / 1285
页数:14
相关论文
共 50 条
  • [21] Skew Voronoi diagrams
    Aichholzer, O
    Aurenhammer, F
    Chen, DZ
    Lee, DT
    Papadopoulou, E
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1999, 9 (03) : 235 - 247
  • [22] DYNAMIC VORONOI DIAGRAMS
    GOWDA, IG
    KIRKPATRICK, DG
    LEE, DT
    NAAMAD, A
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1983, 29 (05) : 724 - 731
  • [23] Semi Voronoi Diagrams
    Cheng, Yongxi
    Li, Bo
    Xu, Yinfeng
    COMPUTATIONAL GEOMETRY, GRAPHS AND APPLICATIONS, 2011, 7033 : 19 - +
  • [24] Bregman Voronoi Diagrams
    Jean-Daniel Boissonnat
    Frank Nielsen
    Richard Nock
    Discrete & Computational Geometry, 2010, 44 : 281 - 307
  • [25] SIMPLIFIED VORONOI DIAGRAMS
    CANNY, J
    DONALD, B
    DISCRETE & COMPUTATIONAL GEOMETRY, 1988, 3 (03) : 219 - 236
  • [26] Voronoi diagrams on the sphere
    Na, HS
    Lee, CN
    Cheong, O
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2002, 23 (02): : 183 - 194
  • [27] Bregman Voronoi Diagrams
    Boissonnat, Jean-Daniel
    Nielsen, Frank
    Nock, Richard
    DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 44 (02) : 281 - 307
  • [28] Voronoi Diagrams on orbifolds
    Dpto. Matemáticas, Estadística y Comp., Universidad de Cantabria, Santander 39071, Spain
    Comput Geom Theory Appl, 5 (219-230):
  • [29] Recursive Voronoi diagrams
    Boots, B
    Shiode, N
    ENVIRONMENT AND PLANNING B-PLANNING & DESIGN, 2003, 30 (01): : 113 - 124
  • [30] Voronoi Diagrams on orbifolds
    Mazon, M
    Recio, T
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1997, 8 (05): : 219 - 230