Bayesian image reconstruction based on Voronoi diagrams

被引:6
|
作者
Cabrera, G. F. [1 ,2 ]
Casassus, S.
Hitschfeld, N. [2 ]
机构
[1] Univ Chile, Dept Astron, Santiago, Chile
[2] Univ Chile, Dept Ciencias Computac, Santiago, Chile
来源
ASTROPHYSICAL JOURNAL | 2008年 / 672卷 / 02期
关键词
methods : data analysis; methods : numerical; methods : statistical; techniques : image processing; techniques : interferometric;
D O I
10.1086/523961
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a Bayesian Voronoi image reconstruction ( VIR) technique for interferometric data. Bayesian analysis applied to the inverse problem allows us to derive the a posteriori probability of a novel parameterization of interferometric images. We use a variable Voronoi diagram as our model in place of the usual fixed-pixel grid. A quantization of the intensity field allows us to calculate the likelihood function and a priori probabilities. The Voronoi image is optimized including the number of polygons as free parameters. We apply our algorithm to deconvolve simulated interferometric data. Residuals, restored images, and chi(2) values are used to compare our reconstructions with fixed-grid models. VIR has the advantage of modeling the image with few parameters, obtaining a better image from a Bayesian point of view.
引用
收藏
页码:1272 / 1285
页数:14
相关论文
共 50 条
  • [1] Study on image reconstruction of diffraction tomography with density compensation algorithm by Voronoi diagrams
    Fang, Jie
    Liu, Ren-Jin
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2014, 42 (07): : 1268 - 1272
  • [2] Incremental Reconstruction of Generalized Voronoi Diagrams on Grids
    Kalra, Nidhi
    Ferguson, Dave
    Stentz, Anthony
    INTELLIGENT AUTONOMOUS SYSTEMS 9, 2006, : 114 - 123
  • [3] Reconstruction of Voronoi diagrams in inverse potential problems
    Birgin, Ernesto G.
    Laurain, Antoine
    Souza, Danilo R.
    ESAIM - Control, Optimisation and Calculus of Variations, 2024, 30
  • [4] Incremental reconstruction of generalized Voronoi diagrams on grids
    Kalra, Nidhi
    Ferguson, Dave
    Stentz, Anthony
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2009, 57 (02) : 123 - 128
  • [5] On the recognition and reconstruction of weighted Voronoi diagrams and bisector graphs
    Eder, Guenther
    Held, Martin
    de Lorenzo, Stefan
    Palfrader, Peter
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2023, 109
  • [6] Browsing Large Image Datasets through Voronoi Diagrams
    Brivio, Paolo
    Tarini, Marco
    Cignoni, Paolo
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2010, 16 (06) : 1261 - 1270
  • [7] Voronoi diagrams based function identification
    Kavka, C
    Schoenauer, M
    GENETIC AND EVOLUTIONARY COMPUTATION - GECCO 2003, PT I, PROCEEDINGS, 2003, 2723 : 1089 - 1100
  • [8] Area Queries Based on Voronoi Diagrams
    Li, Yang
    2020 IEEE 36TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2020), 2020, : 2064 - 2068
  • [9] APPROXIMATION OF GENERALIZED VORONOI DIAGRAMS BY ORDINARY VORONOI DIAGRAMS
    SUGIHARA, K
    CVGIP-GRAPHICAL MODELS AND IMAGE PROCESSING, 1993, 55 (06): : 522 - 531
  • [10] Shape reconstruction from unorganized points using Voronoi diagrams
    Lee, S
    Choi, Y
    Kim, K
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2003, 21 (06): : 446 - 451