A note on large deviation probabilities for empirical distribution of branching random walks

被引:3
|
作者
Shi, Wanlin [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
关键词
Empirical distribution; Branching random walk; Bottcher case; Large deviation;
D O I
10.1016/j.spl.2018.11.029
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a branching random walk on R started from the origin. Let Z(n)(.)be the counting measure which counts the number of individuals at the nth generation located in a given set. For any interval A subset of R, it is well known that Zn(root nA)/Zn(R) converges a.s. to v(A) under some mild conditions, where v is the standard Gaussian measure. In this note, we study the convergence rate of P((Z) over bar (n) (root n sigma(2)A) - v(A) >= Delta), for a small constant Delta is an element of (0, 1 -v(A)). Our work completes the results in Chen and He (2017) and Louidor and Perkins (2015), where the step size of the underlying walk is assumed to have Weibull tail, Gumbel tail or be bounded. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:18 / 28
页数:11
相关论文
共 50 条
  • [41] Branching Random Walks and Martingales
    Shi, Zhan
    BRANCHING RANDOM WALKS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLII - 2012, 2015, 2151 : 19 - 28
  • [42] Cookie branching random walks
    Bartsch, Christian
    Kochler, Michael
    Kochler, Thomas
    Mueller, Sebastian
    Popov, Serguei
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2013, 10 (01): : 323 - 358
  • [43] A large deviation theorem for a branching Brownian motion with random immigration
    Sun, Hongyan
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (06) : 1559 - 1566
  • [44] On the trace of branching random walks
    Benjamini, Itai
    Mueller, Sebastian
    GROUPS GEOMETRY AND DYNAMICS, 2012, 6 (02) : 231 - 247
  • [45] Branching Random Walks with Selection
    Shi, Zhan
    BRANCHING RANDOM WALKS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLII - 2012, 2015, 2151 : 99 - 105
  • [46] MINIMA IN BRANCHING RANDOM WALKS
    Addario-Berry, Louigi
    Reed, Bruce
    ANNALS OF PROBABILITY, 2009, 37 (03): : 1044 - 1079
  • [47] Simplicial branching random walks
    Rosenthal R.
    Journal of Applied and Computational Topology, 2024, 8 (6) : 1751 - 1791
  • [48] Large deviation principles for random walks with regularly varying distributions of jumps
    Borovkov A.A.
    Siberian Mathematical Journal, 2011, 52 (3) : 402 - 410
  • [49] Convex hulls of multiple random walks: A large-deviation study
    Dewenter, Timo
    Claussen, Gunnar
    Hartmann, Alexander K.
    Majumdar, Satya N.
    PHYSICAL REVIEW E, 2016, 94 (05)
  • [50] LARGE DEVIATION PRINCIPLES FOR RANDOM WALKS WITH REGULARLY VARYING DISTRIBUTIONS OF JUMPS
    Borovkov, A. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2011, 52 (03) : 402 - 410