On the trace of branching random walks

被引:13
|
作者
Benjamini, Itai [1 ]
Mueller, Sebastian [2 ]
机构
[1] Weizmann Inst Sci, Fac Math, IL-76100 Rehovot, Israel
[2] Univ Aix Marseille 1, Lab Anal, F-13453 Marseille 13, France
关键词
Branching random walk; trace; unimodular random network; recurrence; invariant percolation; PERCOLATION; RECURRENCE; DIMENSION;
D O I
10.4171/GGD/156
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study branching random walks on Cayley graphs. A first result is that the trace of a transient branching random walk on a Cayley graph is almost surely (a.s.) transient for the simple random walk. In addition, it has a.s. critical percolation probability less than one and exponential volume growth. The proofs rely on the fact that the trace induces an invariant percolation on the family tree of the branching random walk. Furthermore, we prove that the trace is a.s. strongly recurrent for any (non-trivial) branching random walk. This follows from the observation that the trace, after appropriate biasing of the root, defines a unimodular measure. All results are stated in the more general context of branching random walks on unimodular random graphs.
引用
收藏
页码:231 / 247
页数:17
相关论文
共 50 条
  • [1] Global survival of branching random walks and tree-like branching random walks
    Bertacchi, Daniela
    Coletti, Cristian F.
    Zucca, Fabio
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2017, 14 (01): : 381 - 402
  • [2] Branching Random Walks and Martingales
    Shi, Zhan
    [J]. BRANCHING RANDOM WALKS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLII - 2012, 2015, 2151 : 19 - 28
  • [3] Cookie branching random walks
    Bartsch, Christian
    Kochler, Michael
    Kochler, Thomas
    Mueller, Sebastian
    Popov, Serguei
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2013, 10 (01): : 323 - 358
  • [4] Branching Random Walks with Selection
    Shi, Zhan
    [J]. BRANCHING RANDOM WALKS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLII - 2012, 2015, 2151 : 99 - 105
  • [5] MINIMA IN BRANCHING RANDOM WALKS
    Addario-Berry, Louigi
    Reed, Bruce
    [J]. ANNALS OF PROBABILITY, 2009, 37 (03): : 1044 - 1079
  • [6] Survival of Branching Random Walks in Random Environment
    Nina Gantert
    Sebastian Müller
    Serguei Popov
    Marina Vachkovskaia
    [J]. Journal of Theoretical Probability, 2010, 23 : 1002 - 1014
  • [7] Survival of Branching Random Walks in Random Environment
    Gantert, Nina
    Mueller, Sebastian
    Popov, Serguei
    Vachkovskaia, Marina
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2010, 23 (04) : 1002 - 1014
  • [8] Multidimensional branching random walks in random environment
    Comets, Francis
    Popov, Serguei
    [J]. ANNALS OF PROBABILITY, 2007, 35 (01): : 68 - 114
  • [9] Localization for branching random walks in random environment
    Hu, Yueyun
    Yoshida, Nobuo
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (05) : 1632 - 1651
  • [10] Branching random walks with random environments in time
    Chunmao Huang
    Xingang Liang
    Quansheng Liu
    [J]. Frontiers of Mathematics in China, 2014, 9 : 835 - 842