Background modeling by subspace learning on spatio-temporal patches

被引:9
|
作者
Zhao, Youdong [1 ,2 ]
Gong, Haifeng [2 ,3 ,4 ]
Jia, Yunde [1 ]
Zhu, Song-Chun [2 ,3 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci, Beijing Lab Intelligent Informat Technol, Beijing 100081, Peoples R China
[2] Lotus Hill Res Inst, Ezhou 436000, Peoples R China
[3] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
[4] Google Inc, Mountain View, CA 94043 USA
关键词
Visual surveillance; Background modeling; Spatio-temporal patch; Subspace learning; TRACKING; SEGMENTATION; PIXEL;
D O I
10.1016/j.patrec.2012.01.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel background model for video surveillance-Spatio-Temporal Patch based Background Modeling (STPBM). We use spatio-temporal patches, called bricks, to characterize both the appearance and motion information. Our method is based on the observation that all the background bricks at a given location under all possible lighting conditions lie in a low dimensional background subspace, while bricks with moving foreground are widely distributed outside. An efficient online subspace learning method is presented to capture the subspace, which is able to model the illumination changes more robustly than traditional pixel-wise or block-wise methods. Experimental results demonstrate that the proposed method is insensitive to drastic illumination changes yet capable of detecting dim foreground objects under low contrast. Moreover, it outperforms the state-of-the-art in various challenging scenes with illumination changes. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1134 / 1147
页数:14
相关论文
共 50 条
  • [1] Spatio-Temporal Patches for Night Background Modeling by Subspace Learning
    Zhao, Youdong
    Gong, Haifeng
    Lin, Liang
    Jia, Yunde
    [J]. 19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3089 - 3092
  • [2] Spatio-temporal Gaussian Mixture Model for Background Modeling
    Soh, Youngsung
    Hae, Yongsuk
    Kim, Intaek
    [J]. 2012 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2012, : 360 - 363
  • [3] Learning spatio-temporal dependency of local patches for complex motion segmentation
    Xu, Jiang
    Yuan, Junsong
    Wu, Ying
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2011, 115 (03) : 334 - 351
  • [4] Adaptive background learning for vehicle detection and spatio-temporal tracking
    Zhang, CC
    Chen, SC
    Shyu, ML
    Peeta, S
    [J]. ICICS-PCM 2003, VOLS 1-3, PROCEEDINGS, 2003, : 797 - 801
  • [5] An adaptive background modeling for foreground detection using spatio-temporal features
    Subrata Kumar Mohanty
    Suvendu Rup
    [J]. Multimedia Tools and Applications, 2021, 80 : 1311 - 1341
  • [6] An adaptive background modeling for foreground detection using spatio-temporal features
    Mohanty, Subrata Kumar
    Rup, Suvendu
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (01) : 1311 - 1341
  • [7] Deep Learning for Spatio-Temporal Modeling of Dynamic Spontaneous Emotions
    Al Chanti, Dawood
    Caplier, Alice
    [J]. IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2021, 12 (02) : 363 - 376
  • [8] Machine learning application to spatio-temporal modeling of urban growth
    Kim, Yuna
    Safikhani, Abolfazl
    Tepe, Emre
    [J]. COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 2022, 94
  • [9] Learning a spatio-temporal correlation
    Narain, D.
    Mamassian, P.
    van Beers, R. J.
    Smeets, J. B. J.
    Brenner, E.
    [J]. PERCEPTION, 2012, 41 : 58 - 58
  • [10] Spatio-Temporal Split Learning
    Kim, Joongheon
    Park, Seunghoon
    Jung, Soyi
    Yoo, Seehwan
    [J]. 51ST ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS - SUPPLEMENTAL VOL (DSN 2021), 2021, : 11 - 12