Linking and multiplicity results for the p-Laplacian on unbounded cylinders

被引:19
|
作者
Fan, XL [1 ]
Zhao, YZ [1 ]
机构
[1] Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1006/jmaa.2000.7468
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the p-Laplacian problem -Delta (p)u = lambdaa(x)/u/(p-2)u + f(x,u) in Ohm, u is an element of W-0(1,p)(Ohm), on unbounded cylinders Ohm = <(<Ohm>)over tilde> x RN-m subset of R-N, N - m greater than or equal to 2, where Delta (p)u = div(/delu/(p-2)delu), lambda is a constant in a certain range, and a is an element of L-N/p(Ohm) boolean AND L-infinity(Ohm) is nonnegative, a not equal 0. Using the principle of symmetric criticality, existence and multiplicity are proved under suitable conditions on a and f. (C) 2001 Academic Press.
引用
收藏
页码:479 / 489
页数:11
相关论文
共 50 条