Linking and multiplicity results for the p-Laplacian on unbounded cylinders

被引:19
|
作者
Fan, XL [1 ]
Zhao, YZ [1 ]
机构
[1] Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1006/jmaa.2000.7468
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the p-Laplacian problem -Delta (p)u = lambdaa(x)/u/(p-2)u + f(x,u) in Ohm, u is an element of W-0(1,p)(Ohm), on unbounded cylinders Ohm = <(<Ohm>)over tilde> x RN-m subset of R-N, N - m greater than or equal to 2, where Delta (p)u = div(/delu/(p-2)delu), lambda is a constant in a certain range, and a is an element of L-N/p(Ohm) boolean AND L-infinity(Ohm) is nonnegative, a not equal 0. Using the principle of symmetric criticality, existence and multiplicity are proved under suitable conditions on a and f. (C) 2001 Academic Press.
引用
收藏
页码:479 / 489
页数:11
相关论文
共 50 条
  • [21] MULTIPLICITY RESULTS FOR A KIRCHHOFF SINGULAR PROBLEM INVOLVING THE FRACTIONAL P-LAPLACIAN
    Hsini, Mounir
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (03): : 884 - 900
  • [22] Multiplicity Results for Degenerate Fractional p-Laplacian Problems with Critical Growth
    Wang, Li
    Wang, Jixiu
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2018, 19 (02) : 215 - 222
  • [23] Multiplicity results for p-Laplacian boundary value problem with jumping nonlinearities
    Tacksun Jung
    Q-Heung Choi
    [J]. Boundary Value Problems, 2019
  • [24] A multiplicity results for a singular problem involving the fractional p-Laplacian operator
    Ghanmi, A.
    Saoudi, K.
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (09) : 1199 - 1216
  • [25] Equations of p-Laplacian type in unbounded domains
    De Nápoli, PL
    Mariani, MC
    [J]. ADVANCED NONLINEAR STUDIES, 2002, 2 (03) : 237 - 250
  • [26] Multiplicity of solutions for a superlinear p-Laplacian equation
    Torre, Francesco
    Ruf, Bernhard
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (07) : 2132 - 2147
  • [27] Multiplicity for fractional differential equations with p-Laplacian
    Tian, Yuansheng
    Wei, Yongfang
    Sun, Sujing
    [J]. BOUNDARY VALUE PROBLEMS, 2018,
  • [28] ON MULTIPLICITY OF EIGENVALUES AND SYMMETRY OF EIGENFUNCTIONS OF THE p-LAPLACIAN
    Audoux, Benjamin
    Bobkov, Vladimir
    Parini, Enea
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2018, 51 (02) : 565 - 582
  • [29] Multiplicity for fractional differential equations with p-Laplacian
    Yuansheng Tian
    Yongfang Wei
    Sujing Sun
    [J]. Boundary Value Problems, 2018
  • [30] A Multiplicity Result for the p-Laplacian Involving a Parameter
    Brock, Friedemann
    Iturriaga, Leonelo
    Ubilla, Pedro
    [J]. ANNALES HENRI POINCARE, 2008, 9 (07): : 1371 - 1386