Parameter Selection in Sparsity-Driven SAR Imaging

被引:30
|
作者
Batu, Ozge [1 ]
Cetin, Mujdat [1 ]
机构
[1] Sabanci Univ, Fac Engn & Nat Sci, TR-34956 Istanbul, Turkey
关键词
CROSS-VALIDATION; NOISY; RECONSTRUCTION;
D O I
10.1109/TAES.2011.6034687
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
We consider a recently developed sparsity-driven synthetic aperture radar (SAR) imaging approach which can produce superresolution, feature-enhanced images. However, this regularization-based approach requires the selection of a hyper-parameter in order to generate such high-quality images. In this paper we present a number of techniques for automatically selecting the hyper-parameter involved in this problem. We propose and develop numerical procedures for the use of Stein's unbiased risk estimation, generalized cross-validation, and L-curve techniques for automatic parameter choice. We demonstrate and compare the effectiveness of these procedures through experiments based on both simple synthetic scenes, as well as electromagnetically simulated realistic data. Our results suggest that sparsity-driven SAR imaging coupled with the proposed automatic parameter choice procedures offers significant improvements over conventional SAR imaging.
引用
收藏
页码:3040 / 3050
页数:11
相关论文
共 50 条
  • [31] Recent advances in sparsity-driven signal recovery
    Donoho, DL
    Tsaig, Y
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 713 - 716
  • [32] Sparsity-Driven SAR Imaging for Highly Maneuvering Ground Target by the Combination of Time-Frequency Analysis and Parametric Bayesian Learning
    Yang, Lei
    Zhao, Lifan
    Zhou, Song
    Bi, Guoan
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (04) : 1443 - 1455
  • [33] Sparsity-driven SAR Image Reconstruction via Low-rank Sparse Matrix Decomposition
    Soganli, Abdurrahim
    Cetin, Mujdat
    [J]. 2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 2333 - 2336
  • [34] Sparsity-Driven ISAR Imaging via Hierarchical Channel-Mixed Framework
    Liang, Jiadian
    Wei, Shunjun
    Wang, Mou
    Shi, Jun
    Zhang, Xiaoling
    [J]. IEEE SENSORS JOURNAL, 2021, 21 (17) : 19222 - 19235
  • [35] Sparsity-Driven Reconstruction Technique for Microwave/Millimeter-Wave Computational Imaging
    Fromenteze, Thomas
    Decroze, Cyril
    Abid, Sana
    Yurduseven, Okan
    [J]. SENSORS, 2018, 18 (05)
  • [36] SPARSITY-DRIVEN RECONSTRUCTION OF l∞-DECODED IMAGES
    Li, Yuanman
    Zhou, Jiantao
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 4612 - 4616
  • [37] Sparsity-Driven Reconstruction for FDOT With Anatomical Priors
    Baritaux, Jean-Charles
    Hassler, Kai
    Bucher, Martina
    Sanyal, Sebanti
    Unser, Michael
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (05) : 1143 - 1153
  • [38] Parallelization of Sparsity-driven Change Detection Method
    Ozgur, Atilla
    Saran, Ayse Nurdan
    Nar, Fatih
    [J]. 2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [39] SPARSITY-DRIVEN DIGITAL TERRAIN MODEL EXTRACTION
    Nar, Fatih
    Yilmaz, Erdal
    Camps-Valls, Gustau
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1316 - 1319
  • [40] Efficient orbital imaging based on ultrafast momentum microscopy and sparsity-driven phase retrieval
    Jansen, G. S. M.
    Keunecke, M.
    Duevel, M.
    Moeller, C.
    Schmitt, D.
    Bennecke, W.
    Kappert, F. J. S.
    Steil, D.
    Luke, D. R.
    Steil, S.
    Mathias, S.
    [J]. NEW JOURNAL OF PHYSICS, 2020, 22 (06):