Parameter Selection in Sparsity-Driven SAR Imaging

被引:30
|
作者
Batu, Ozge [1 ]
Cetin, Mujdat [1 ]
机构
[1] Sabanci Univ, Fac Engn & Nat Sci, TR-34956 Istanbul, Turkey
关键词
CROSS-VALIDATION; NOISY; RECONSTRUCTION;
D O I
10.1109/TAES.2011.6034687
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
We consider a recently developed sparsity-driven synthetic aperture radar (SAR) imaging approach which can produce superresolution, feature-enhanced images. However, this regularization-based approach requires the selection of a hyper-parameter in order to generate such high-quality images. In this paper we present a number of techniques for automatically selecting the hyper-parameter involved in this problem. We propose and develop numerical procedures for the use of Stein's unbiased risk estimation, generalized cross-validation, and L-curve techniques for automatic parameter choice. We demonstrate and compare the effectiveness of these procedures through experiments based on both simple synthetic scenes, as well as electromagnetically simulated realistic data. Our results suggest that sparsity-driven SAR imaging coupled with the proposed automatic parameter choice procedures offers significant improvements over conventional SAR imaging.
引用
收藏
页码:3040 / 3050
页数:11
相关论文
共 50 条
  • [11] Majorization–Minimization approach for real-time enhancement of sparsity-driven SAR imaging
    Anahita Asadipooya
    Sadegh Samadi
    Majid Moradikia
    Reza Mohseni
    [J]. Journal of Real-Time Image Processing, 2021, 18 : 1441 - 1455
  • [12] Sparsity-Driven Stripmap SAR Imaging and Phase Error Estimation Based on Phase Curvature Autofocus
    Yu, Deshui
    Zhu, Ziyi
    Zhang, Jingjing
    Song, Yufan
    Bi, Hui
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [13] Clustered Sparsity-Driven SAR Imaging and Autofocus Algorithm in Structured Phase-Noisy Environments
    Yang, Yue
    Zhang, Xuejing
    Gui, Guan
    Wan, Qun
    [J]. IEEE ACCESS, 2019, 7 : 70200 - 70211
  • [14] Sparsity-driven sparse-aperture ultrasound imaging
    Cetin, Mujdat
    Bossy, Emmanuel
    Cleveland, Robin
    Karl, W. Clem
    [J]. 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 1337 - 1340
  • [15] Majorization-Minimization approach for real-time enhancement of sparsity-driven SAR imaging
    Asadipooya, Anahita
    Samadi, Sadegh
    Moradikia, Majid
    Mohseni, Reza
    [J]. JOURNAL OF REAL-TIME IMAGE PROCESSING, 2021, 18 (05) : 1441 - 1455
  • [16] SPARSITY-DRIVEN IMAGE FORMATION AND SPACE-VARIANT FOCUSING FOR SAR
    Onhon, N. Ozben
    Cetin, Mujdat
    [J]. 2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 173 - 176
  • [17] A Sparsity-Driven Auto-focus Technique for Radar Imaging
    Zhao, Lifan
    Wang, Lu
    Bi, Guoan
    Yang, Lei
    Zhang, Haijian
    [J]. PROCEEDINGS OF THE 2016 IEEE 11TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2016, : 2381 - 2385
  • [18] Sparsity-driven ideal observer for computed medical imaging systems
    Wang, Kun
    Lou, Yang
    Kupinski, Matthew A.
    Anastasio, Mark A.
    [J]. MEDICAL IMAGING 2015: IMAGE PERCEPTION, OBSERVER PERFORMANCE, AND TECHNOLOGY ASSESSMENT, 2015, 9416
  • [19] Cooperative Multitask Learning for Sparsity-Driven SAR Imagery and Nonsystematic Error Autocalibration
    Yang, Lei
    Li, Pucheng
    Zhang, Su
    Zhao, Lifan
    Zhou, Song
    Xing, Mengdao
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07): : 5132 - 5147
  • [20] Sparsity-Driven High-Resolution and Wide-Swath SAR Imaging via Poisson Disk Sampling
    Yang, Xiaoyu
    Li, Gang
    Sun, Jinping
    Liu, Yu
    Xia, Xiang-Gen
    [J]. 2019 IEEE RADAR CONFERENCE (RADARCONF), 2019,