Parameter Selection in Sparsity-Driven SAR Imaging

被引:30
|
作者
Batu, Ozge [1 ]
Cetin, Mujdat [1 ]
机构
[1] Sabanci Univ, Fac Engn & Nat Sci, TR-34956 Istanbul, Turkey
关键词
CROSS-VALIDATION; NOISY; RECONSTRUCTION;
D O I
10.1109/TAES.2011.6034687
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
We consider a recently developed sparsity-driven synthetic aperture radar (SAR) imaging approach which can produce superresolution, feature-enhanced images. However, this regularization-based approach requires the selection of a hyper-parameter in order to generate such high-quality images. In this paper we present a number of techniques for automatically selecting the hyper-parameter involved in this problem. We propose and develop numerical procedures for the use of Stein's unbiased risk estimation, generalized cross-validation, and L-curve techniques for automatic parameter choice. We demonstrate and compare the effectiveness of these procedures through experiments based on both simple synthetic scenes, as well as electromagnetically simulated realistic data. Our results suggest that sparsity-driven SAR imaging coupled with the proposed automatic parameter choice procedures offers significant improvements over conventional SAR imaging.
引用
收藏
页码:3040 / 3050
页数:11
相关论文
共 50 条
  • [1] Sparsity-driven Coupled Imaging and Autofocusing for Interferometric SAR
    Zengin, Oguzcan
    Khwaja, Ahmed Shaharyar
    Cetin, Mujdat
    [J]. ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XXV, 2018, 10647
  • [2] SAR Moving Target Imaging in a Sparsity-driven Framework
    Onhon, N. Ozben
    Cetin, Mujdat
    [J]. WAVELETS AND SPARSITY XIV, 2011, 8138
  • [3] Sparsity-Driven Despeckling for SAR Images
    Ozcan, Caner
    Sen, Baha
    Nar, Fatih
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (01) : 115 - 119
  • [4] A Sparsity-Driven Approach for Joint SAR Imaging and Phase Error Correction
    Onhon, N. Ozben
    Cetin, Mujdat
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (04) : 2075 - 2088
  • [5] Sparsity-driven Autofocus for Multipass SAR Tomography
    Muirhead, F.
    Mulgrew, B.
    Woodhouse, I. H.
    Greig, D.
    [J]. SAR IMAGE ANALYSIS, MODELING, AND TECHNIQUES XV, 2015, 9642
  • [6] Sparsity-Driven Distributed Array Imaging
    Liu, Dehong
    Kamilov, Ulugbek S.
    Boufounos, Petros T.
    [J]. 2015 IEEE 6TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2015, : 441 - 444
  • [7] Improved SAR Imaging Contour Extraction Using Smooth Sparsity-Driven Regularization
    Ghazi, Galia
    Rappaport, Carey M.
    Martinez-Lorenzo, Jose A.
    [J]. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2016, 15 : 266 - 269
  • [8] Sparsity-Driven Change Detection in Multitemporal SAR Images
    Nar, Fatih
    Ozgur, Atilla
    Saran, Ayse Nurdan
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (07) : 1032 - 1036
  • [9] DICTIONARY LEARNING FOR SPARSITY-DRIVEN SAR IMAGE RECONSTRUCTION
    Soganli, Abdurrahim
    Cetin, Mujdat
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 1693 - 1697
  • [10] Sparsity-Driven GMTI Processing Framework With Multichannel SAR
    Wu, Di
    Yaghoobi, Mehrdad
    Davies, Mike E.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (03): : 1434 - 1447