The Kostrikin radical and the invariance of the core of reduced extended affine Lie algebras

被引:1
|
作者
Tocon, Maribel [1 ]
机构
[1] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
关键词
extended affine Lie algebra; Lie torus; core; Kostrikin radical;
D O I
10.4153/CMB-2008-030-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that the Kostrikin radical of an extended affine Lie algebra of reduced type coincides with the center of its core, and use this characterization to get a type-free description of the core of such algebras. As a consequence we get that the core of an extended affine Lie algebra of reduced type is invariant under the automorphisms of the algebra.
引用
收藏
页码:298 / 309
页数:12
相关论文
共 50 条
  • [41] Extended affine Lie algebras, vertex algebras and equivariant φ-coordinated quasi-modules
    Chen, Fulin
    Tan, Shaobin
    Yu, Nina
    ISRAEL JOURNAL OF MATHEMATICS, 2024, 259 (01) : 347 - 400
  • [42] Extended affine Lie algebras, vertex algebras and equivariant ϕ-coordinated quasi-modules
    Fulin Chen
    Shaobin Tan
    Nina Yu
    Israel Journal of Mathematics, 2024, 259 : 347 - 400
  • [43] Representations of extended affine Lie algebras coordinatized by certain quantum tori
    Gao, Y
    COMPOSITIO MATHEMATICA, 2000, 123 (01) : 1 - 25
  • [44] MODULES FOR THE CORE OF EXTENDED AFFINE LIE ALGEBRAS OF TYPE A1 WITH COORDINATES IN RANK 2 QUANTUM TORI
    Lin Weiqiang
    Su Yucai
    PACIFIC JOURNAL OF MATHEMATICS, 2009, 242 (01) : 143 - 166
  • [45] Localization of highest weight modules of a class of extended affine Lie algebras
    Liu, Genqiang
    Li, Yang
    Wang, Yihan
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 129 : 208 - 216
  • [46] Integrable Representations for Extended Affine Lie Algebras Coordinated by Quantum Tori
    Chen, Fulin
    Tan, Shaobin
    JOURNAL OF LIE THEORY, 2013, 23 (02) : 383 - 405
  • [47] Realizations of affine Lie algebras
    Futorny, Vyacheslav
    ALGEBRA & DISCRETE MATHEMATICS, 2005, (01): : 30 - 46
  • [48] Instantons and affine Lie algebras
    Nakajima, H
    NUCLEAR PHYSICS B, 1996, : 154 - 161
  • [49] HYPERBOLIZATION OF AFFINE LIE ALGEBRAS
    Sun, Kaiwen
    Wang, Haowu
    Williams, Brandon
    arXiv, 2023,
  • [50] SYMPLECTIC REFLECTION ALGEBRAS AND AFFINE LIE ALGEBRAS
    Etingof, Pavel
    MOSCOW MATHEMATICAL JOURNAL, 2012, 12 (03) : 543 - 565