The Kostrikin radical and the invariance of the core of reduced extended affine Lie algebras

被引:1
|
作者
Tocon, Maribel [1 ]
机构
[1] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
关键词
extended affine Lie algebra; Lie torus; core; Kostrikin radical;
D O I
10.4153/CMB-2008-030-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that the Kostrikin radical of an extended affine Lie algebra of reduced type coincides with the center of its core, and use this characterization to get a type-free description of the core of such algebras. As a consequence we get that the core of an extended affine Lie algebra of reduced type is invariant under the automorphisms of the algebra.
引用
收藏
页码:298 / 309
页数:12
相关论文
共 50 条
  • [31] The root system and the core of an extended affine Lie algebra
    Allison B.N.
    Gao Y.
    Selecta Mathematica, 2001, 7 (2) : 149 - 212
  • [32] Structurable tori and extended affine Lie algebras of type BC
    Allison, B
    Yoshii, Y
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2003, 184 (2-3) : 105 - 138
  • [33] Simple modules for twisted Hamiltonian extended affine Lie algebras
    Tantubay, Santanu
    Chakraborty, Priyanshu
    Batra, Punita
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 696 : 29 - 45
  • [34] Torsors, Reductive Group Schemes and Extended Affine Lie Algebras
    Gille, Philippe
    Pianzola, Arturo
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 226 (1063) : 1 - +
  • [35] Classification of integrable representations for toroidal extended affine Lie algebras
    Chen, Fulin
    Li, Zhiqiang
    Tan, Shaobin
    JOURNAL OF ALGEBRA, 2021, 574 : 1 - 37
  • [36] TWISTED QUANTUM AFFINIZATIONS AND QUANTIZATION OF EXTENDED AFFINE LIE ALGEBRAS
    Chen, Fulin
    Jing, Naihuan
    Kong, Fei
    Tan, Shaobin
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (02) : 969 - 1039
  • [37] Fgc extended affine Lie algebras as fixed point subalgebras
    Guo, Hongyan
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (04) : 1656 - 1666
  • [38] Realization of locally extended affine Lie algebras of type A(1)
    Behboodi, G.
    CATEGORIES AND GENERAL ALGEBRAIC STRUCTURES WITH APPLICATIONS, 2016, 5 (01) : 153 - 162
  • [39] Integrable modules for twisted toroidal extended affine Lie algebras
    Rao, S. Eswara
    Sharma, Sachin S.
    Batra, Punita
    JOURNAL OF ALGEBRA, 2020, 556 : 1057 - 1072
  • [40] Trigonometric Lie algebras, affine Lie algebras, and vertex algebras
    Li, Haisheng
    Tan, Shaobin
    Wang, Qing
    ADVANCES IN MATHEMATICS, 2020, 363