Prediction of behavior of fresh concrete exposed to vibration using artificial neural networks and regression model

被引:11
|
作者
Aktas, Gultekin [1 ]
Ozerdem, Mehmet Sirac [2 ]
机构
[1] Dicle Univ, Dept Civil Engn, TR-21280 Diyarbakir, Turkey
[2] Dicle Univ, Dept Elect & Elect Engn, TR-21280 Diyarbakir, Turkey
关键词
precast concrete mold; compaction of fresh concrete; vibration; modeling; artificial neural networks (ANNs); regression model; COMPRESSIVE STRENGTH; DESIGN;
D O I
10.12989/sem.2016.60.4.655
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper aims to develop models to accurately predict the behavior of fresh concrete exposed to vibration using artificial neural networks (ANNs) model and regression model (RM). For this purpose, behavior of a full scale precast concrete mold was investigated experimentally and numerically. Experiment was performed under vibration with the use of a computer-based data acquisition system. Transducers were used to measure time-dependent lateral displacements at some points on mold while both mold is empty and full of fresh concrete. Modeling of empty and full mold was made using both ANNs and RM. For the modeling of ANNs: Experimental data were divided randomly into two parts. One of them was used for training of the ANNs and the remaining part was used for testing the ANNs. For the modeling of RM: Sinusoidal regression model equation was determined and the predicted data was compared with measured data. Finally, both models were compared with each other. The comparisons of both models show that the measured and testing results are compatible. Regression analysis is a traditional method that can be used for modeling with simple methods. However, this study also showed that ANN modeling can be used as an alternative method for behavior of fresh concrete exposed to vibration in precast concrete structures.
引用
收藏
页码:655 / 665
页数:11
相关论文
共 50 条
  • [21] Prediction of Draft Force of a Chisel Cultivator Using Artificial Neural Networks and Its Comparison with Regression Model
    Abbaspour-Gilandeh, Yousef
    Fazeli, Masoud
    Roshanianfard, Ali
    Hernandez-Hernandez, Mario
    Gallardo-Bernal, Ivan
    Luis Hernandez-Hernandez, Jose
    AGRONOMY-BASEL, 2020, 10 (04):
  • [22] Prediction and modeling of mechanical properties of concrete modified with ceramic waste using artificial neural network and regression model
    Kshirsagar, Pravin R.
    Upreti, Kamal
    Kushwah, Virendra Singh
    Hundekari, Sheela
    Jain, Dhyanendra
    Pandey, Amit Kumar
    Parashar, Jyoti
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 183 - 197
  • [23] Water Demand Prediction using Artificial Neural Networks and Support Vector Regression
    Msiza, Ishmael S.
    Nelwamondo, Fulufhelo V.
    Marwala, Tshilidzi
    JOURNAL OF COMPUTERS, 2008, 3 (11) : 1 - 8
  • [24] Prediction of blast-induced ground vibration using artificial neural networks
    Monjezi, M.
    Ghafurikalajahi, M.
    Bahrami, A.
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2011, 26 (01) : 46 - 50
  • [25] Prediction of fracture parameters of concrete by Artificial Neural Networks
    Ince, R
    ENGINEERING FRACTURE MECHANICS, 2004, 71 (15) : 2143 - 2159
  • [26] Application of artificial neural networks for prediction of concrete properties
    Abdulla, N.
    MAGAZINE OF CIVIL ENGINEERING, 2022, 110 (02):
  • [27] Prediction of compressive strength of recycled aggregate concrete using artificial neural networks
    Duan, Z. H.
    Kou, S. C.
    Poon, C. S.
    CONSTRUCTION AND BUILDING MATERIALS, 2013, 40 : 1200 - 1206
  • [28] Compressive strength prediction of limestone filler concrete using artificial neural networks
    Ayat, Hocine
    Kellouche, Yasmina
    Ghrici, Mohamed
    Boukhatem, Bakhta
    ADVANCES IN COMPUTATIONAL DESIGN, 2018, 3 (03): : 289 - 302
  • [29] Prediction of Target Displacement of Reinforced Concrete Frames Using Artificial Neural Networks
    Kameli, Iman
    Miri, Mahmoud
    Raji, Ali
    ADVANCES IN CIVIL ENGINEERING, PTS 1-6, 2011, 255-260 : 2345 - 2349
  • [30] Compressive strength prediction of environmentally friendly concrete using artificial neural networks
    Naderpour, Hosein
    Rafiean, Amir Hossein
    Fakharian, Pouyan
    JOURNAL OF BUILDING ENGINEERING, 2018, 16 : 213 - 219