Heat and Navier-Stokes equations in supercritical function spaces

被引:6
|
作者
Baaske, Franka [1 ]
机构
[1] Univ Jena, Dept Math, D-07737 Jena, Germany
来源
REVISTA MATEMATICA COMPLUTENSE | 2015年 / 28卷 / 02期
关键词
Heat equations; Navier-Stokes equations; Function spaces; Strong solutions;
D O I
10.1007/s13163-014-0166-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper deals with solutions of nonlinear heat and Navier-Stokes equations in the context of Besov and Triebel-Lizorkin spaces and where 1 <= p, q <= infinity and -1 + n/p < s < n/p.
引用
收藏
页码:281 / 301
页数:21
相关论文
共 50 条
  • [41] Interior regularity criteria in weak spaces for the Navier-Stokes equations
    Kim, H
    Kozono, H
    MANUSCRIPTA MATHEMATICA, 2004, 115 (01) : 85 - 100
  • [42] The normal form of the Navier-Stokes equations in suitable normed spaces
    Foias, Ciprian
    Hoang, Luan
    Olson, Eric
    Ziane, Mohammed
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (05): : 1635 - 1673
  • [43] Asymptotic expansion in Gevrey spaces for solutions of Navier-Stokes equations
    Hoang, Luan T.
    Martinez, Vincent R.
    ASYMPTOTIC ANALYSIS, 2017, 104 (3-4) : 167 - 190
  • [44] Weak Morrey spaces and strong solutions to the Navier-Stokes equations
    Chang-xing Miao
    Bao-Quan Yuan
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (10): : 1401 - 1417
  • [45] On the Deformation Tensor Regularity for the Navier-Stokes Equations in Lorentz Spaces
    Huang, Shiguo
    Ji, Xiang
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (04) : 2371 - 2380
  • [46] Besov spaces and Navier-Stokes equations on R3
    Furioli, G
    Lemarié-Rieusset, PG
    Zahrouni, E
    Zhioua, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (05): : 339 - 342
  • [47] Weak Morrey spaces and strong solutions to the Navier-Stokes equations
    Chang-xing MIAO~(1+) Bao-quan YUAN~2 ~1 Institute of Applied Physics and Computational Mathematics
    ~2 College of Mathematics and Informatics
    ScienceinChina(SeriesA:Mathematics), 2007, (10) : 1401 - 1417
  • [48] Regularity and stability for the solutions of the Navier-Stokes equations in Lorentz spaces
    Barraza, OA
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 35 (06) : 747 - 764
  • [49] Global existence in critical spaces for compressible Navier-Stokes equations
    Danchin, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (08): : 649 - 652
  • [50] Stationary solutions of the Navier-Stokes equations in the spaces Lp(ℝn)
    D. L. Vaksman
    L. I. Sazonov
    Differential Equations, 2014, 50 : 47 - 56