Heat and Navier-Stokes equations in supercritical function spaces

被引:6
|
作者
Baaske, Franka [1 ]
机构
[1] Univ Jena, Dept Math, D-07737 Jena, Germany
来源
REVISTA MATEMATICA COMPLUTENSE | 2015年 / 28卷 / 02期
关键词
Heat equations; Navier-Stokes equations; Function spaces; Strong solutions;
D O I
10.1007/s13163-014-0166-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper deals with solutions of nonlinear heat and Navier-Stokes equations in the context of Besov and Triebel-Lizorkin spaces and where 1 <= p, q <= infinity and -1 + n/p < s < n/p.
引用
收藏
页码:281 / 301
页数:21
相关论文
共 50 条
  • [31] Initial Values for the Navier-Stokes Equations in Spaces with Weights in Time
    Farwig, Reinhard
    Giga, Yoshikazu
    Hsu, Pen-Yuan
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2016, 59 (02): : 199 - 216
  • [32] Triebel-Lizorkin-Lorentz Spaces and the Navier-Stokes Equations
    Hobus, Pascal
    Saal, Juergen
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2019, 38 (01): : 41 - 72
  • [33] An alternative approach to regularity for the Navier-Stokes equations in critical spaces
    Kenig, Carlos E.
    Koch, Gabriel S.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (02): : 159 - 187
  • [34] THE ROLE OF MORREY SPACES IN THE STUDY OF NAVIER-STOKES AND EULER EQUATIONS
    Lemarie-Rieusset, P. G.
    EURASIAN MATHEMATICAL JOURNAL, 2012, 3 (03): : 62 - 93
  • [35] Weighted spaces with detached asymptotics in application to the Navier-Stokes equations
    Nazarov, SA
    ADVANCES IN MATHEMATICAL FLUID MECHANICS, 2000, : 159 - 191
  • [36] Global existence in critical spaces for compressible Navier-Stokes equations
    Danchin, R
    INVENTIONES MATHEMATICAE, 2000, 141 (03) : 579 - 614
  • [37] Flow Representation of the Navier-Stokes Equations in Weighted Sobolev Spaces
    Sirisubtawee, Sekson
    Manitcharoen, Naowarat
    Saksurakan, Chukiat
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2025, 23
  • [38] Regularity and stability for the solutions of the Navier-Stokes equations in Lorentz spaces
    Departamento de Matematica, La Plata, Argentina
    Nonlinear Anal Theory Methods Appl, 6 (747-764):
  • [39] Global existence in critical spaces for compressible Navier-Stokes equations
    R. Danchin
    Inventiones mathematicae, 2000, 141 : 579 - 614
  • [40] The Cauchy problem for fractional Navier-Stokes equations in Sobolev spaces
    Peng, Li
    Zhou, Yong
    Ahmad, Bashir
    Alsaedi, Ahmed
    CHAOS SOLITONS & FRACTALS, 2017, 102 : 218 - 228