The impact of the thermostats on the non-equilibrium computer simulations of the interfacial thermal conductance

被引:8
|
作者
Olarte-Plata, Juan D. [1 ]
Bresme, Fernando [1 ]
机构
[1] Imperial Coll London, Dept Chem, Mol Sci Res Hub, London, England
基金
英国工程与自然科学研究理事会;
关键词
Interfacial thermal conductance; non-equilibrium molecular dynamics; gold-water interface; polarisation; thermostats; MOLECULAR-DYNAMICS; RESISTANCE; TRANSPORT; CONDUCTIVITY; MODEL;
D O I
10.1080/08927022.2021.1959033
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Non-equilibrium molecular dynamics simulations have expanded our ability to investigate interfacial thermal transport and quantify the interfacial thermal conductance (ITC) across solid and fluid interfaces. NEMD studies have highlighted the importance of interfacial degrees of freedom and the need to include effects beyond traditional theoretical methods that rely on bulk properties. NEMD simulations often use explicit hot and cold thermostats to set up thermal gradients. We analyse here the impact of the thermostat on the calculated ITC of the gold-water interface. We employ a polarisable model for gold based on Drude oscillators. We show that the 'local' Langevin thermostat modifies the vibrational density of states of the polarisable solid, resulting in ITCs that depend very strongly on the damping constant of the thermostat. We report an increase of the ITC of up to 40% for short damping times. Damping times longer than the characteristic heat flux relaxation time of the solid lead to converging ITCs. In contrast, the ITCs obtained with global canonical velocity rescale thermostats are independent of the damping time but lead to a break of equipartition for Drude particles. Setting individual thermostats for the core and shell sites in the Drude particle solves this problem.
引用
收藏
页码:87 / 98
页数:12
相关论文
共 50 条
  • [31] Thermal non-equilibrium transport in colloids
    Wuerger, Alois
    REPORTS ON PROGRESS IN PHYSICS, 2010, 73 (12)
  • [32] Thermochemical Non-Equilibrium in Thermal Plasmas
    Bultel, Arnaud
    Morel, Vincent
    Annaloro, Julien
    ATOMS, 2019, 7 (01):
  • [33] NON-EQUILIBRIUM THERMAL FLUCTUATION IN FLOW
    Li, Wei
    PROCEEDINGS OF THE ASME 2020 FLUIDS ENGINEERING DIVISION SUMMER MEETING (FEDSM2020), VOL 2, 2020,
  • [34] Non-equilibrium thermal/mechanical behaviour
    Sih, G.C.
    Proceedings of the Mini-Symposium on Micromechanics at the CSME Mechanical Engineering Forum, 1991,
  • [35] EXTENT OF THERMAL NON-EQUILIBRIUM IN IONOSPHERE
    MAHAJAN, KK
    JOURNAL OF ATMOSPHERIC AND TERRESTRIAL PHYSICS, 1967, 29 (09): : 1137 - +
  • [36] Non-equilibrium phenomena in thermal plasmas
    Cressault Y.
    Teulet Ph.
    Baumann X.
    Gleizes A.
    Cressault, Y. (cressault@laplace.univ-tlse.fr), 1600, IOP Publishing Ltd (02):
  • [37] Thermal fluctuations in non-equilibrium thermodynamics
    Sengers, Jan V.
    de Zarate, Jose M. Ortiz
    JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 2007, 32 (03) : 319 - 329
  • [38] Relativistic particle in thermal non-equilibrium
    Mohammadikhabaz, E.
    Lari, B.
    Hassanabadi, H.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 593
  • [39] A reversible problem in non-equilibrium thermodynamics: Hamiltonian evolution equations for non-equilibrium molecular dynamics simulations
    Edwards, BJ
    Dressler, M
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2001, 96 (1-2) : 163 - 175
  • [40] Polarization of acetonitrile under thermal fields via non-equilibrium molecular dynamics simulations
    Gittus, Oliver R.
    Albella, Pablo
    Bresme, Fernando
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (20):