The impact of the thermostats on the non-equilibrium computer simulations of the interfacial thermal conductance

被引:8
|
作者
Olarte-Plata, Juan D. [1 ]
Bresme, Fernando [1 ]
机构
[1] Imperial Coll London, Dept Chem, Mol Sci Res Hub, London, England
基金
英国工程与自然科学研究理事会;
关键词
Interfacial thermal conductance; non-equilibrium molecular dynamics; gold-water interface; polarisation; thermostats; MOLECULAR-DYNAMICS; RESISTANCE; TRANSPORT; CONDUCTIVITY; MODEL;
D O I
10.1080/08927022.2021.1959033
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Non-equilibrium molecular dynamics simulations have expanded our ability to investigate interfacial thermal transport and quantify the interfacial thermal conductance (ITC) across solid and fluid interfaces. NEMD studies have highlighted the importance of interfacial degrees of freedom and the need to include effects beyond traditional theoretical methods that rely on bulk properties. NEMD simulations often use explicit hot and cold thermostats to set up thermal gradients. We analyse here the impact of the thermostat on the calculated ITC of the gold-water interface. We employ a polarisable model for gold based on Drude oscillators. We show that the 'local' Langevin thermostat modifies the vibrational density of states of the polarisable solid, resulting in ITCs that depend very strongly on the damping constant of the thermostat. We report an increase of the ITC of up to 40% for short damping times. Damping times longer than the characteristic heat flux relaxation time of the solid lead to converging ITCs. In contrast, the ITCs obtained with global canonical velocity rescale thermostats are independent of the damping time but lead to a break of equipartition for Drude particles. Setting individual thermostats for the core and shell sites in the Drude particle solves this problem.
引用
收藏
页码:87 / 98
页数:12
相关论文
共 50 条
  • [21] Non-equilibrium dynamics and structure of interfacial ice
    Andreussi, Oliviero
    Donadio, Davide
    Parrinello, Michele
    Zewail, Ahmed H.
    CHEMICAL PHYSICS LETTERS, 2006, 426 (1-3) : 115 - 119
  • [22] Thermal conductivity of amorphous silica using non-equilibrium molecular dynamics simulations
    Mahajan, S.
    Subbarayan, G.
    Sammakia, B. G.
    2006 PROCEEDINGS 10TH INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONICS SYSTEMS, VOLS 1 AND 2, 2006, : 1269 - +
  • [23] Extrapolation of thermal conductivity in non-equilibrium molecular dynamics simulations to bulk scale
    Talaat, Khaled
    El-Genk, Mohamed S.
    Cowen, Benjamin
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2020, 118
  • [24] On multiscale non-equilibrium molecular dynamics simulations
    Li, Shaofan
    Sheng, Ni
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 83 (8-9) : 998 - 1038
  • [25] Strict simulations of non-equilibrium dynamics of colloids
    Yamamoto, Ryoichi
    Kim, Kang
    Nakayama, Yasuya
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2007, 311 (1-3) : 42 - 47
  • [26] On the quest for accurate simulations of non-equilibrium flows
    Cinnella, P
    SECOND INTERNATIONAL CONFERENCE ON NONLINEAR PROBLEMS IN AVIATION & AEROSPACE VOL 1 AND 2, 1999, : 159 - 164
  • [27] Using non-equilibrium simulations to estimate equilibrium binding affinities
    Ytreberg, F. Marty
    BIOLOGICAL PHYSICS, 2008, 978 : 65 - 74
  • [28] Impact of Thermal Non-equilibrium on Weak Nonlinear Rotating Porous Convection
    R. N. Dayananda
    I. S. Shivakumara
    Transport in Porous Media, 2019, 130 : 819 - 845
  • [29] Impact of Thermal Non-equilibrium on Weak Nonlinear Rotating Porous Convection
    Dayananda, R. N.
    Shivakumara, I. S.
    TRANSPORT IN POROUS MEDIA, 2019, 130 (03) : 819 - 845
  • [30] NON-EQUILIBRIUM THERMODYNAMICS IN THERMAL ENGINEERING
    YANTOVSKY, EI
    ENERGY, 1989, 14 (07) : 393 - 396