Color neighborhood union conditions for long heterochromatic paths in edge-colored graphs

被引:0
|
作者
Chen, He
Li, Xueliang [1 ]
机构
[1] Nankai Univ, Ctr Combinat, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC TJKLC, Tianjin 300071, Peoples R China
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2007年 / 14卷 / 01期
关键词
edge-colored graph; color neighboorhood; heterochromatic; (rainbow; or multicolored) path;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be an edge-colored graph. A heterochromatic (rainbow, or multicolored) path of G is such a path in which no two edges have the same color. Let C N (v) denote the color neighborhood of a vertex v of G. In a previous paper, we showed that if vertical bar C N (u) boolean OR C N (v)vertical bar >= s (color neighborhood union condition) for every pair of vertices u and v of G, then G has a heterochromatic path of length at least [2s+4/5]. In the present paper, we prove that G has a heterochromatic path of length at least [s+1/2], and give examples to show that the lower bound is best possible in some sense.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Acyclicity in edge-colored graphs
    Gutin, Gregory
    Jones, Mark
    Sheng, Bin
    Wahlstrom, Magnus
    Yeo, Anders
    [J]. DISCRETE MATHEMATICS, 2017, 340 (02) : 1 - 8
  • [42] Finding disjoint paths on edge-colored graphs: more tractability results
    Dondi, Riccardo
    Sikora, Florian
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 36 (04) : 1315 - 1332
  • [43] Finding disjoint paths on edge-colored graphs: more tractability results
    Riccardo Dondi
    Florian Sikora
    [J]. Journal of Combinatorial Optimization, 2018, 36 : 1315 - 1332
  • [44] A Note on Heterochromatic C4 in Edge-Colored Triangle-Free Graphs
    Guanghui Wang
    Hao Li
    Yan Zhu
    Guizhen Liu
    [J]. Graphs and Combinatorics, 2012, 28 : 901 - 905
  • [45] ON MONOCHROMATIC PATHS IN EDGE-COLORED DIGRAPHS
    SANDS, B
    SAUER, N
    WOODROW, R
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1982, 33 (03) : 271 - 275
  • [46] Maximum colored trees in edge-colored graphs
    Borozan, V.
    de la Vega, W. Fernandez
    Manoussakis, Y.
    Martinhon, C.
    Muthu, R.
    Pham, H. P.
    Saad, R.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2019, 80 : 296 - 310
  • [47] Complete edge-colored permutation graphs
    Hartman, Tom
    Bannach, Max
    Middendorf, Martin
    Stadlera, Peter F.
    Wieseke, Nicolas
    Hellmuth, Mare
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2022, 139
  • [48] PACKING PROBLEMS IN EDGE-COLORED GRAPHS
    HELL, P
    MANOUSSAKIS, Y
    TUZA, Z
    [J]. DISCRETE APPLIED MATHEMATICS, 1994, 52 (03) : 295 - 306
  • [49] On the existence of cycles with restrictions in the color transitions in edge-colored complete graphs
    Galeana-Sanchez, Hortensia
    Hernandez-Lorenzana, Felipe
    Sanchez-Lopez, Rocio
    Vilchis-Alfaro, Carlos
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):
  • [50] Decompositions of edge-colored complete graphs
    Lamken, ER
    Wilson, RM
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 89 (02) : 149 - 200