Determination of material properties and failure using in-situ thermo-mechanical probe

被引:0
|
作者
Arrazat, B. [1 ]
Orellana, S. [2 ,3 ]
Rivero, C. [3 ]
Fornara, P. [3 ]
Di-Giacomo, A. [3 ]
Blayac, S. [1 ]
Montmitonnet, P. [2 ]
Inal, K. [2 ]
机构
[1] Ecole Natl Super Mines, CMP, 880 Route Mimet, F-13541 Gardanne, France
[2] Mines ParisTech, CEMEF UMR CNRS 7635, F-06904 Sophia Antipolis, France
[3] STMicroelectronics, TR&D, F-13106 Rousset, France
关键词
Back-End of Line (BEoL); embedded sensor; thermo-mechanical properties; Joule effect; Finite Element Modeling; in-situ SEM nano-probing; failure mechanisms; STRESS; METALLIZATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A metallic in-situ stress sensor is modified to address electrical polarization and thus to locally heat this sensor by Joule effect. By coupling SEM electrical nano-probing with analytical modeling and multiphysics Finite Element Method (FEM), the thermo-mechanical properties are identified. As a result, a tensile stress state of 190 MPa, coefficient of thermal expansion of 22.5x10(-6) K-1 and thermal conductivity of 190 W/(K. m) are identified in the aluminum thin film in agreement with literature. Moreover, high current induces irreversible deformation and breaking. Using multiphysics FE model with identified thermo-mechanical properties, the failure of the sensor under electrical solicitation is investigated. The evolution of local temperature and mechanical deformation on different sensor designs allows the determination of the breaking location and condition.
引用
收藏
页码:372 / +
页数:5
相关论文
共 50 条
  • [41] Experimental Method for Complex Thermo-mechanical Material Analysis
    Pavol Koštial
    Ivan Ružiak
    Zdeněk Jonšta
    Ivan Kopal
    Rudolf Hrehuš
    Jana Kršková
    International Journal of Thermophysics, 2010, 31 : 630 - 636
  • [42] Numerical approach on the thermo-mechanical coupling of brittle material
    Tang, Shi-Bin
    Tang, Chun-An
    Li, Lian-Chong
    Liang, Zheng-Zhao
    Jisuan Lixue Xuebao/Chinese Journal of Computational Mechanics, 2009, 26 (02): : 172 - 179
  • [43] Thermo-Mechanical Analysis of Functionally Graded Material Plate
    Sharma, Kanishk
    Kumar, Dinesh
    ADVANCED SCIENCE LETTERS, 2016, 22 (11) : 3813 - 3816
  • [44] Experimental Method for Complex Thermo-mechanical Material Analysis
    Kostial, Pavol
    Ruziak, Ivan
    Jonsta, Zdenek
    Kopal, Ivan
    Hrehus, Rudolf
    Krskova, Jana
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2010, 31 (03) : 630 - 636
  • [45] Estimation of Coupled Thermo-Physical and Thermo-Mechanical Properties of Porous Thermolabile Ceramic Material using Hot Distortion Plus® Test
    Ignaszak, Zenon
    Popielarski, Pawel
    Strek, Tomasz
    DIFFUSION IN SOLIDS AND LIQUIDS VI, PTS 1 AND 2, 2011, 312-315 : 764 - 769
  • [46] Simulation of the Thermo-Mechanical Behavior and Failure of Refractory of Converter
    Chen, Xia
    Chang, Qingming
    Chen, Changjun
    Zhang, Yunxiang
    ADVANCES IN CIVIL ENGINEERING, PTS 1-6, 2011, 255-260 : 4139 - 4142
  • [47] Assessment of hydrocolloid effects on the thermo-mechanical properties of wheat using the Mixolab
    Rosell, Cristina M.
    Collar, Concepcion
    Haros, Monica
    FOOD HYDROCOLLOIDS, 2007, 21 (03) : 452 - 462
  • [48] Thermo-mechanical memory responses of biological viscoelastic tissue with variable thermal material properties
    Ezzat, Magdy A.
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2021, 31 (01) : 548 - 569
  • [49] The effect of material properties and initial defects on the thermo-mechanical behavior of a dual damascene module
    Gonda, V
    den Toonder, J
    Beijer, J
    Zhang, GQ
    Ernst, LJ
    54TH ELECTRONIC COMPONENTS & TECHNOLOGY CONFERENCE, VOLS 1 AND 2, PROCEEDINGS, 2004, : 913 - 917
  • [50] Thermo-mechanical memory responses of biological viscoelastic tissue with variable thermal material properties
    Ezzat, Magdy A.
    International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31 (01): : 548 - 569