Determination of material properties and failure using in-situ thermo-mechanical probe

被引:0
|
作者
Arrazat, B. [1 ]
Orellana, S. [2 ,3 ]
Rivero, C. [3 ]
Fornara, P. [3 ]
Di-Giacomo, A. [3 ]
Blayac, S. [1 ]
Montmitonnet, P. [2 ]
Inal, K. [2 ]
机构
[1] Ecole Natl Super Mines, CMP, 880 Route Mimet, F-13541 Gardanne, France
[2] Mines ParisTech, CEMEF UMR CNRS 7635, F-06904 Sophia Antipolis, France
[3] STMicroelectronics, TR&D, F-13106 Rousset, France
关键词
Back-End of Line (BEoL); embedded sensor; thermo-mechanical properties; Joule effect; Finite Element Modeling; in-situ SEM nano-probing; failure mechanisms; STRESS; METALLIZATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A metallic in-situ stress sensor is modified to address electrical polarization and thus to locally heat this sensor by Joule effect. By coupling SEM electrical nano-probing with analytical modeling and multiphysics Finite Element Method (FEM), the thermo-mechanical properties are identified. As a result, a tensile stress state of 190 MPa, coefficient of thermal expansion of 22.5x10(-6) K-1 and thermal conductivity of 190 W/(K. m) are identified in the aluminum thin film in agreement with literature. Moreover, high current induces irreversible deformation and breaking. Using multiphysics FE model with identified thermo-mechanical properties, the failure of the sensor under electrical solicitation is investigated. The evolution of local temperature and mechanical deformation on different sensor designs allows the determination of the breaking location and condition.
引用
收藏
页码:372 / +
页数:5
相关论文
共 50 条
  • [32] A coupled thermo-mechanical model for simulating the material failure evolution due to localized heating
    Department of Civil and Environmental Engineering, University of Missouri-Columbia, Columbia, MO 65211-2200, United States
    不详
    CMES Comput. Model. Eng. Sci., 2008, 2 (123-137):
  • [33] A coupled thermo-mechanical model for simulating the material failure evolution due to localized heating
    Chen, Z.
    Gan, Y.
    Chen, J. K.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2008, 26 (02): : 123 - 137
  • [34] Thermo-mechanical disturbances in a nonlocal rotating elastic material with temperature dependent properties
    Sheoran, Devender
    Kumar, Rajesh
    Thakran, Seema
    Kalkal, Kapil Kumar
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2021, 31 (12) : 3597 - 3620
  • [35] Surface texture and thermo-mechanical properties of material extruded and ironed polylactic acid
    Caputo, Matthew
    Rashwan, Ola
    Waryoba, Daudi
    McDade, Kevin
    ADDITIVE MANUFACTURING, 2022, 59
  • [36] Study of Thermo-Mechanical Properties of Polypropylene and Low Density Polyethylene Composite Material
    Parmjit, S.
    Sohpal, Vipan K.
    Sharma, Rajesh K.
    ORIENTAL JOURNAL OF CHEMISTRY, 2016, 32 (01) : 455 - 461
  • [37] Effect of hydrothermal aging on the thermo-mechanical properties of a composite dental prosthetic material
    Pegoretti, A
    Migliaresi, C
    POLYMER COMPOSITES, 2002, 23 (03) : 342 - 351
  • [38] An in-situ experimental investigate of thermo-mechanical behavior of a large diameter over length energy pile
    Xiong, Zhiyong
    Li, Xiaozhao
    Zhao, Peng
    Zhang, Donghai
    Dong, Shengshi
    ENERGY AND BUILDINGS, 2021, 252 (252)
  • [39] Investigation of crack repair using piezoelectric material under thermo-mechanical loading
    Kumar, Ritesh
    Singh, Akhilendra
    Tiwari, Mayank
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2020, 31 (19) : 2243 - 2260
  • [40] Determination of thermo-mechanical properties of SMA by inverse approach using isothermal stress-cycle tests
    Yoshida, F
    Kyogoku, H
    Sakuma, T
    Toropov, VV
    PRICM 4: FORTH PACIFIC RIM INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS AND PROCESSING, VOLS I AND II, 2001, : 1867 - 1870