Avoiding collider bias in Mendelian randomization when performing stratified analyses

被引:24
|
作者
Coscia, Claudia [1 ,2 ,3 ]
Gill, Dipender [4 ,5 ,6 ,7 ]
Benitez, Raquel [1 ,2 ]
Perez, Teresa [3 ]
Malats, Nuria [1 ,2 ]
Burgess, Stephen [8 ]
机构
[1] Spanish Natl Canc Res Ctr CNIO, Genet & Mol Epidemiol Grp, Madrid, Spain
[2] CIBERONC, Madrid, Spain
[3] Univ Complutense Madrid, Dept Stat & Data Sci, Madrid, Spain
[4] Imperial Coll London, Dept Epidemiol & Biostat, London, England
[5] Novo Nordisk Res Ctr Oxford, Old Rd Campus, Oxford, England
[6] St Georges Univ Hosp NHS Fdn Trust, Clin Pharmacol Grp, Pharm & Med Directorate, London, England
[7] St Georges Univ London, Inst Infect & Immun, Clin Pharmacol & Therapeut Sect, London, England
[8] Univ Cambridge, MRC Biostat Unit, Cambridge, England
基金
英国惠康基金; 英国医学研究理事会;
关键词
Mendelian randomization; Collider bias; Stratification; Bladder cancer; Smoking; Bodyweight; INSTRUMENTAL VARIABLE ANALYSIS;
D O I
10.1007/s10654-022-00879-0
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Mendelian randomization (MR) uses genetic variants as instrumental variables to investigate the causal effect of a risk factor on an outcome. A collider is a variable influenced by two or more other variables. Naive calculation of MR estimates in strata of the population defined by a collider, such as a variable affected by the risk factor, can result in collider bias. We propose an approach that allows MR estimation in strata of the population while avoiding collider bias. This approach constructs a new variable, the residual collider, as the residual from regression of the collider on the genetic instrument, and then calculates causal estimates in strata defined by quantiles of the residual collider. Estimates stratified on the residual collider will typically have an equivalent interpretation to estimates stratified on the collider, but they are not subject to collider bias. We apply the approach in several simulation scenarios considering different characteristics of the collider variable and strengths of the instrument. We then apply the proposed approach to investigate the causal effect of smoking on bladder cancer in strata of the population defined by bodyweight. The new approach generated unbiased estimates in all the simulation settings. In the applied example, we observed a trend in the stratum-specific MR estimates at different bodyweight levels that suggested stronger effects of smoking on bladder cancer among individuals with lower bodyweight. The proposed approach can be used to perform MR studying heterogeneity among subgroups of the population while avoiding collider bias.
引用
收藏
页码:671 / 682
页数:12
相关论文
共 50 条
  • [41] Bias due to participant overlap in two-sample Mendelian randomization
    Burgess, Stephen
    Davies, Neil M.
    Thompson, Simon G.
    [J]. GENETIC EPIDEMIOLOGY, 2016, 40 (07) : 597 - 608
  • [42] Bias in causal estimates from Mendelian randomization studies with weak instruments
    Burgess, Stephen
    Thompson, Simon G.
    [J]. STATISTICS IN MEDICINE, 2011, 30 (11) : 1312 - 1323
  • [43] Mendelian randomization in health research: Using appropriate genetic variants and avoiding biased estimates
    Taylor, Amy E.
    Davies, Neil M.
    Ware, Jennifer J.
    VanderWeele, Tyler
    Smith, George Davey
    Munafo, Marcus R.
    [J]. ECONOMICS & HUMAN BIOLOGY, 2014, 13 : 99 - 106
  • [44] MENDELIAN RANDOMIZATION IN HEALTH RESEARCH: USING APPROPRIATE GENETIC VARIANTS AND AVOIDING BIASED ESTIMATES
    Taylor, Amy
    Davies, Neil
    Ware, Jennifer
    VanderWeele, Tyler
    Smith, George Davey
    Munafo, Marcus
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2013, 177 : S18 - S18
  • [45] Mendelian randomization analyses reveal novel drug targets for anorexia nervosa
    Yang, Jian
    Fan, Yajuan
    Yan, Bin
    Zhao, Binbin
    Li Qian
    Gao, Fengjie
    Ma, Qingyan
    Yang, Lihong
    Wang, Wei
    Bai, Ling
    Zhu, Feng
    Ma, Xiancang
    [J]. PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2022, 112
  • [46] Association between inflammation and cognition: based cohort and Mendelian randomization analyses
    Slaney, Chloe
    Sallis, Hannah
    Jones, Hannah J.
    Dardani, Christina
    Tilling, Kate
    Munafo, Marcus
    Smith, George Davey
    Mahedy, Liam
    Khandaker, Golam
    [J]. PSYCHONEUROENDOCRINOLOGY, 2024, 160
  • [47] Cigarette Smoking and Endometrial Cancer Risk: Observational and Mendelian Randomization Analyses
    Dimou, Niki
    Omiyale, Wemimo
    Biessy, Carine
    Viallon, Vivian
    Kaaks, Rudolf
    O'Mara, Tracy A.
    Aglago, Elom K.
    Ardanaz, Eva
    Bergmann, Manuela M.
    Bondonno, Nicola P.
    Braaten, Tonje
    Colorado-Yohar, Sandra M.
    Crous-Bou, Marta
    Dahm, Christina C.
    Fortner, Renee T.
    Gram, Inger T.
    Harlid, Sophia
    Heath, Alicia K.
    Idahl, Annika
    Kvaskoff, Marina
    Nost, Therese H.
    Overvad, Kim
    Palli, Domenico
    Perez-Cornago, Aurora
    Sacerdote, Carlotta
    Sanchez, Maria-Jose
    Schulze, Matthias B.
    Severi, Gianluca
    Simeon, Vittorio
    Tagliabue, Giovanna
    Tjonneland, Anne
    Truong, Therese
    Tumino, Rosario
    Johansson, Mattias
    Weiderpass, Elisabete
    Murphy, Neil
    Gunter, Marc J.
    Lacey, Ben
    Allen, Naomi E.
    Dossus, Laure
    [J]. CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2022, 31 (09) : 1839 - 1848
  • [48] Precision Medicine and Cardiovascular Health: Insights from Mendelian Randomization Analyses
    Spiller, Wes
    Jung, Keum Ji
    Lee, Ji-Young
    Ha Jee, Sun
    [J]. KOREAN CIRCULATION JOURNAL, 2020, 50 (02) : 91 - 111
  • [49] Mendelian randomization analyses explore the relationship between cathepsins and lung cancer
    Li, Jialin
    Tang, Mingbo
    Gao, Xinliang
    Tian, Suyan
    Liu, Wei
    [J]. COMMUNICATIONS BIOLOGY, 2023, 6 (01)
  • [50] Use of the instrumental inequalities in simulated mendelian randomization analyses with coarsened exposures
    Diemer, Elizabeth W.
    Shi, Joy
    Hernan, Miguel A.
    Swanson, Sonja A.
    [J]. EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2024, 39 (05) : 491 - 499