Agnostic Estimation for Misspecified Phase Retrieval Models

被引:0
|
作者
Neykov, Matey [1 ]
Wang, Zhaoran [1 ]
Liu, Han [1 ]
机构
[1] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
关键词
REGRESSION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The goal of noisy high-dimensional phase retrieval is to estimate an s -sparse parameter beta* is an element of R-d from n realizations of the model Y = (X(sic)beta*)(2) + epsilon. Based on this model, we propose a significant semi-parametric generalization called misspecified phase retrieval (MPR), in which Y = f(X(sic)beta*, epsilon) with unknown f and Cov(Y; (X>beta*)(2)) > 0. For example, MPR encompasses Y = h((X(sic)vertical bar beta*vertical bar) + epsilon with increasing h as a special case. Despite the generality of the MPR model, it eludes the reach of most existing semi-parametric estimators. In this paper, we propose an estimation procedure, which consists of solving a cascade of two convex programs and provably recovers the direction of beta*. Our theory is backed up by thorough numerical results.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] On the bootstrap in misspecified regression models
    Velilla, S
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2001, 36 (02) : 227 - 242
  • [42] Linear affine estimation in misspecified linear regression models using fuzzy prior information
    Arnold, BF
    Stahlecker, P
    STATISTICS, 1998, 32 (01) : 1 - 12
  • [43] Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables
    Ai, Chunrong
    Chen, Xiaohong
    JOURNAL OF ECONOMETRICS, 2007, 141 (01) : 5 - 43
  • [44] Robust designs for misspecified logistic models
    Adewale, Adeniyi J.
    Wiens, Douglas P.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (01) : 3 - 15
  • [45] Correction to: Working with Misspecified Regression Models
    Richard Berk
    Lawrence Brown
    Andreas Buja
    Edward George
    Linda Zhao
    Journal of Quantitative Criminology, 2020, 36 : 397 - 397
  • [46] Statistical finite elements for misspecified models
    Duffin, Connor
    Cripps, Edward
    Stemler, Thomas
    Girolami, Mark
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (02)
  • [47] Misspecified heterogeneity in panel data models
    Matyas, L
    Blanchard, P
    STATISTICAL PAPERS, 1998, 39 (01) : 1 - 27
  • [48] Learning from ambiguous and misspecified models
    Marinacci, Massimo
    Massari, Filippo
    JOURNAL OF MATHEMATICAL ECONOMICS, 2019, 84 : 144 - 149
  • [49] MISSPECIFIED CRB ON PARAMETER ESTIMATION FOR A COUPLED MIXTURE OF POLYNOMIAL PHASE AND SINUSOIDAL FM SIGNALS
    Wang, Pu
    Koike-Akino, Toshiaki
    Pajovic, Milutin
    Orlik, Philip V.
    Tsujita, Wataru
    Gini, Fulvio
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 5302 - 5306
  • [50] Inference for Misspecified Models With Fixed Regressors
    Abadie, Alberto
    Imbens, Guido W.
    Zheng, Fanyin
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (508) : 1601 - 1614