The goal of noisy high-dimensional phase retrieval is to estimate an s -sparse parameter beta* is an element of R-d from n realizations of the model Y = (X(sic)beta*)(2) + epsilon. Based on this model, we propose a significant semi-parametric generalization called misspecified phase retrieval (MPR), in which Y = f(X(sic)beta*, epsilon) with unknown f and Cov(Y; (X>beta*)(2)) > 0. For example, MPR encompasses Y = h((X(sic)vertical bar beta*vertical bar) + epsilon with increasing h as a special case. Despite the generality of the MPR model, it eludes the reach of most existing semi-parametric estimators. In this paper, we propose an estimation procedure, which consists of solving a cascade of two convex programs and provably recovers the direction of beta*. Our theory is backed up by thorough numerical results.
机构:
Univ Penn, Dept Criminol, Philadelphia, PA 19104 USA
Univ Penn, Dept Stat, Philadelphia, PA 19104 USAUniv Penn, Dept Criminol, Philadelphia, PA 19104 USA
Berk, Richard
Brown, Lawrence
论文数: 0引用数: 0
h-index: 0
机构:
Univ Penn, Dept Stat, Philadelphia, PA 19104 USAUniv Penn, Dept Criminol, Philadelphia, PA 19104 USA
Brown, Lawrence
Buja, Andreas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Penn, Dept Stat, Philadelphia, PA 19104 USAUniv Penn, Dept Criminol, Philadelphia, PA 19104 USA
Buja, Andreas
George, Edward
论文数: 0引用数: 0
h-index: 0
机构:
Univ Penn, Dept Stat, Philadelphia, PA 19104 USAUniv Penn, Dept Criminol, Philadelphia, PA 19104 USA
George, Edward
Zhao, Linda
论文数: 0引用数: 0
h-index: 0
机构:
Univ Penn, Dept Stat, Philadelphia, PA 19104 USAUniv Penn, Dept Criminol, Philadelphia, PA 19104 USA