Oscillation Results for a Class of Nonlinear Fractional Order Difference Equations with Damping Term

被引:1
|
作者
Selvam, A. George Maria [1 ]
Alzabut, Jehad [2 ]
Jacintha, Mary [1 ]
Ozbekler, Abdullah [3 ]
机构
[1] Sacred Heart Coll, Dept Math, Tirupattur 635601, Tamil Nadu, India
[2] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh 11586, Saudi Arabia
[3] Atilim Univ, Dept Math, TR-06830 Ankara, Turkey
关键词
CALCULUS;
D O I
10.1155/2020/5495873
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper studies the oscillation of a class of nonlinear fractional order difference equations with damping term of the form Delta[psi(lambda)z(eta) (lambda)] + p(lambda)z(eta) (lambda) + q(lambda)F(Sigma(lambda-1+mu)(s=lambda 0) (lambda - s - 1)((-mu)) y(s)) = , where z(lambda) = a(lambda) + b(lambda)Delta(mu) y(lambda), Delta(mu) stands for the fractional difference operator in Riemann-Liouville settings and of order mu, 0 < mu <= 1, and eta >= 1 is a quotient of odd positive integers and lambda is an element of N lambda 0+1-mu. New oscillation results are established by the help of certain inequalities, features of fractional operators, and the generalized Riccati technique. We verify the theoretical outcomes by presenting two numerical examples.
引用
收藏
页数:10
相关论文
共 50 条