In-situ electrochemical modification of pre-intercalated vanadium bronze cathodes for aqueous zinc-ion batteries

被引:17
|
作者
Li, Jianwei [1 ,2 ]
Hong, Ningyun [2 ]
Luo, Ningjing [1 ]
Dong, Haobo [4 ]
Kang, Liqun [5 ]
Peng, Zhengjun [2 ]
Jia, Guofeng [2 ]
Chai, Guoliang [1 ]
Wang, Min [2 ]
He, Guanjie [3 ,4 ,5 ]
机构
[1] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Peoples R China
[2] Chinese Acad Sci, Qinghai Inst Salt Lakes, Key Lab Comprehens & Highly Efficient Utilizat Sa, Xining 810008, Peoples R China
[3] Univ Lincoln, Sch Chem, Joseph Banks Labs, Green Lane, Lincoln LN6 7DL, England
[4] UCL, Dept Chem, 20 Gordon St, London WC1H 0AJ, England
[5] UCL, Dept Chem Engn, London WC1E 7JE, England
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
in-situ electrochemical conversion; dual-ion pre-intercalated V2O5; electrolyte-controlled conversion; zinc ion batteries; V2O5; CONSEQUENCES;
D O I
10.1007/s40843-021-1893-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Vanadium bronzes have been well-demonstrated as promising cathode materials for aqueous zinc-ion batteries. However, conventional single-ion pre-intercalated V2O5 nearly reached its energy/power ceiling due to the nature of micro/electronic structures and unfavourable phase transition during Zn2+ storage processes. Here, a simple and universal in-situ anodic oxidation method of quasi-layered CaV4O9 in a tailored electrolyte was developed to introduce dual ions (Ca(2+ )and Zn2+) into bilayer delta-V2O5 frameworks forming crystallographic ultra-thin vanadium bronzes, Ca0.12Zn0.12V2O5 center dot nH(2)O. The materials deliver transcendental maximum energy and power densities of 366 W h kg(-1) (478 mA h g(-1) @ 0.2 A g(-1)) and 6627 W kg(-1) (245 mA h g(-1) @ 10 A g(-1)), respectively, and the long cycling stability with a high specific capacity up to 205 mA h g(-1) after 3000 cycles at 10 A g(-1). The synergistic contributions of dual ions and Ca-2(+) electrolyte additives on battery performances were systematically investigated by multiple in-/ex-situ characterisations to reveal reversible structural/chemical evolutions and enhanced electrochemical kinetics, highlighting the significance of electrolyte-governed conversion reaction process. Through the computational approach, reinforced "pillar" effects, charge screening effects and regulated electronic structures derived from pre-intercalated dual ions were elucidated for contributing to boosted charge storage properties.
引用
收藏
页码:1165 / 1175
页数:11
相关论文
共 50 条
  • [41] Rare earth metals ion intercalated hydrated vanadium oxides for high-performance aqueous zinc-ion batteries
    Hu, Bingbing
    Yang, Xinyao
    Li, Dongshan
    Jiang, Jiayu
    Liu, Chenglin
    Deng, Yu
    Pu, Hong
    Ma, Guangqiang
    Li, Zhi
    CERAMICS INTERNATIONAL, 2024, 50 (05) : 8421 - 8428
  • [42] Advances of Metal Oxide Composite Cathodes for Aqueous Zinc-Ion Batteries
    Kumankuma-Sarpong, James
    Guo, Wei
    Fu, Yongzhu
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2022, 3 (06):
  • [43] Metal-ion inserted vanadium oxide nanoribbons as high-performance cathodes for aqueous zinc-ion batteries
    Yu, Liangmin
    Yamauchi, Yusuke
    Wang, Jie
    Pang, Zhibin
    Ding, Bing
    Wang, Yanjian
    Xu, Li
    Zhou, Long
    Jiang, Xiaohui
    Yan, Xuefeng
    Hill, Jonathan P.
    CHEMICAL ENGINEERING JOURNAL, 2022, 446
  • [44] Modification of Zinc Anodes by In Situ ZnO Coating for High-Performance Aqueous Zinc-Ion Batteries
    Zhao, Wen
    Perera, Inosh Prabasha
    Khanna, Harshul S.
    Dang, Yanliu
    Li, Mingxuan
    Posada, Luisa F.
    Tan, Haiyan
    Suib, Steven L.
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (03) : 1172 - 1181
  • [45] Ca2+ pre-intercalated bilayered vanadium oxide for high-performance aqueous Mg-ion batteries
    Fu, Qiang
    Wu, Xiaoyu
    Luo, Xianlin
    Ding, Ziming
    Indris, Sylvio
    Sarapulova, Angelina
    Meng, Zhen
    Desmau, Morgane
    Wang, Zhengqi
    Hua, Weibo
    Kuebel, Christian
    Schwarz, Bjoern
    Knapp, Michael
    Ehrenberg, Helmut
    Wei, Yingjin
    Dsoke, Sonia
    ENERGY STORAGE MATERIALS, 2024, 66
  • [46] Research progress on modification of cathodes for aqueous zinc ion batteries
    Li, Qing
    Chen, Lizhen
    Wang, Yingying
    Pan, Tao
    Pang, Huan
    MATERIALS CHEMISTRY FRONTIERS, 2024, : 3702 - 3723
  • [47] Manganese ion pre-intercalated hydrated vanadium oxide as a high-performance cathode for magnesium ion batteries
    Deng, Xuanwei
    Xu, Yanan
    An, Qinyou
    Xiong, Fangyu
    Tan, Shuangshuang
    Wu, Liming
    Mai, Liqiang
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (17) : 10644 - 10650
  • [48] High electrochemical performance of in-situ carbon-coated vanadyl ethylene glycolate as cathode for aqueous zinc-ion batteries
    Li, Xiaolong
    Feng, Jingjie
    Wen, Ni
    Chen, Siyuan
    Kuang, Quan
    Fan, Qinghua
    Dong, Youzhong
    Zhao, Yanming
    SOLID STATE IONICS, 2021, 364
  • [49] In-situ electrochemical conversion of vanadium dioxide for enhanced zinc-ion storage with large voltage range
    Ding, Junwei
    Gao, Hongge
    Zhao, Kang
    Zheng, Huaiyang
    Zhang, Hang
    Han, Lifeng
    Wang, Shiwen
    Wu, Shide
    Fang, Shaoming
    Cheng, Fangyi
    JOURNAL OF POWER SOURCES, 2021, 487
  • [50] Manganese and Vanadium Oxide Cathodes for Aqueous Rechargeable Zinc-Ion Batteries: A Focused View on Performance, Mechanism, and Developments
    Mathew, Vinod
    Sambandam, Balaji
    Kim, Seokhun
    Kim, Sungjin
    Park, Sohyun
    Lee, Seulgi
    Alfaruqi, Muhammad Hilmy
    Soundharrajan, Vaiyapuri
    Islam, Saiful
    Putro, Dimas Yunianto
    Hwang, Jang-Yeon
    Sun, Yang-Kook
    Kim, Jaekook
    ACS ENERGY LETTERS, 2020, 5 (07) : 2376 - 2400