In-situ electrochemical modification of pre-intercalated vanadium bronze cathodes for aqueous zinc-ion batteries

被引:17
|
作者
Li, Jianwei [1 ,2 ]
Hong, Ningyun [2 ]
Luo, Ningjing [1 ]
Dong, Haobo [4 ]
Kang, Liqun [5 ]
Peng, Zhengjun [2 ]
Jia, Guofeng [2 ]
Chai, Guoliang [1 ]
Wang, Min [2 ]
He, Guanjie [3 ,4 ,5 ]
机构
[1] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Peoples R China
[2] Chinese Acad Sci, Qinghai Inst Salt Lakes, Key Lab Comprehens & Highly Efficient Utilizat Sa, Xining 810008, Peoples R China
[3] Univ Lincoln, Sch Chem, Joseph Banks Labs, Green Lane, Lincoln LN6 7DL, England
[4] UCL, Dept Chem, 20 Gordon St, London WC1H 0AJ, England
[5] UCL, Dept Chem Engn, London WC1E 7JE, England
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
in-situ electrochemical conversion; dual-ion pre-intercalated V2O5; electrolyte-controlled conversion; zinc ion batteries; V2O5; CONSEQUENCES;
D O I
10.1007/s40843-021-1893-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Vanadium bronzes have been well-demonstrated as promising cathode materials for aqueous zinc-ion batteries. However, conventional single-ion pre-intercalated V2O5 nearly reached its energy/power ceiling due to the nature of micro/electronic structures and unfavourable phase transition during Zn2+ storage processes. Here, a simple and universal in-situ anodic oxidation method of quasi-layered CaV4O9 in a tailored electrolyte was developed to introduce dual ions (Ca(2+ )and Zn2+) into bilayer delta-V2O5 frameworks forming crystallographic ultra-thin vanadium bronzes, Ca0.12Zn0.12V2O5 center dot nH(2)O. The materials deliver transcendental maximum energy and power densities of 366 W h kg(-1) (478 mA h g(-1) @ 0.2 A g(-1)) and 6627 W kg(-1) (245 mA h g(-1) @ 10 A g(-1)), respectively, and the long cycling stability with a high specific capacity up to 205 mA h g(-1) after 3000 cycles at 10 A g(-1). The synergistic contributions of dual ions and Ca-2(+) electrolyte additives on battery performances were systematically investigated by multiple in-/ex-situ characterisations to reveal reversible structural/chemical evolutions and enhanced electrochemical kinetics, highlighting the significance of electrolyte-governed conversion reaction process. Through the computational approach, reinforced "pillar" effects, charge screening effects and regulated electronic structures derived from pre-intercalated dual ions were elucidated for contributing to boosted charge storage properties.
引用
收藏
页码:1165 / 1175
页数:11
相关论文
共 50 条
  • [31] Vanadium-based cathodes for aqueous zinc-ion batteries: Mechanism, design strategies and challenges
    Chen, Xiudong
    Zhang, Hang
    Liu, Jin-Hang
    Gao, Yun
    Cao, Xiaohua
    Zhan, Changchao
    Wang, Yawei
    Wang, Shitao
    Chou, Shu-Lei
    Dou, Shi-Xue
    Cao, Dapeng
    ENERGY STORAGE MATERIALS, 2022, 50 : 21 - 46
  • [32] Aluminium pre-intercalated orthorhombic V2O5 as high-performance cathode material for aqueous zinc-ion batteries
    Pang, Qiang
    He, Wei
    Yu, Xiangyu
    Yang, Siyu
    Zhao, Hainan
    Fu, Yao
    Xing, Mingming
    Tian, Ying
    Luo, Xixian
    Wei, Yingjin
    APPLIED SURFACE SCIENCE, 2021, 538
  • [33] Long cycle life and high rate aqueous zinc-ion batteries enabled by polypyrrole bridging ammonium vanadium bronze nanosheet cathodes
    Du, Hao
    Zhang, Meng
    Zhang, Hanlu
    Lei, Xinyu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 939
  • [34] Sodium Pre-Intercalated Carbon/V2O5 Constructed by Sustainable Sodium Lignosulfonate for Stable Cathodes in Zinc-Ion Batteries: A Comprehensive Study
    Chen, Junli
    Zhang, Wenli
    Zhang, Xiaojun
    Li, Ziyan
    Ma, Jianhui
    Zhao, Lei
    Jian, Wenbin
    Chen, Suli
    Yin, Jian
    Lin, Xuliang
    Qin, Yanlin
    Qiu, Xueqing
    CHEMSUSCHEM, 2022, 15 (14)
  • [35] Vanadium Oxide-Conducting Polymers Composite Cathodes for Aqueous Zinc-Ion Batteries: Interfacial Design and Enhancement of Electrochemical Performance
    Tolstopyatova, Elena G.
    Kamenskii, Mikhail A.
    Kondratiev, Veniamin V.
    ENERGIES, 2022, 15 (23)
  • [36] Structural engineering of potassium vanadate cathode by pre-intercalated Mg2+ for high-performance and durable rechargeable aqueous zinc-ion batteries
    Kakarla, Ashok Kumar
    Bandi, Hari
    Syed, Wasim Akram
    Shanthappa, R.
    Yu, Jae Su
    Journal of Magnesium and Alloys, 2024, 12 (09): : 3780 - 3793
  • [37] Low-current-density stability of vanadium-based cathodes for aqueous zinc-ion batteries
    Dou, Xinyue
    Xie, Xuefang
    Liang, Shuquan
    Fang, Guozhao
    SCIENCE BULLETIN, 2024, 69 (06) : 833 - 845
  • [38] Vanadium-Containing Layered Materials as High-Performance Cathodes for Aqueous Zinc-Ion Batteries
    Lewis, Courtney-Elyce M.
    Fernando, Joseph F. S.
    Siriwardena, Dumindu P.
    Firestein, Konstantin L.
    Zhang, Chao
    von Treifeldt, Joel E.
    Golberg, Dmitri V.
    ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (04)
  • [39] Vanadium pentoxide nanosheets as cathodes for aqueous zinc-ion batteries with high rate capability and long durability
    Wang, Xinyu
    Ma, Liwen
    Zhang, Pengchao
    Wang, Hongyu
    Li, Song
    Ji, Shijun
    Wen, Zhongsheng
    Sun, Juncai
    APPLIED SURFACE SCIENCE, 2020, 502
  • [40] Hydrophobic interface induced by Fluorine doping enhances vanadium oxide cathodes for aqueous Zinc-Ion batteries
    Deng, Shiyao
    Yan, Xuemin
    Jiang, Yu
    Li, Aixin
    Zhang, Ruijie
    Qu, Yongheng
    Xie, Zhizhong
    Chemical Engineering Journal, 2025, 503