共 50 条
Inhomogeneous Diophantine approximation over the field of formal Laurent series
被引:6
|作者:
Ma, Chao
[1
]
Su, Wei-Yi
[1
]
机构:
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词:
finite field;
inhomogeneous Diophantine approximation;
metric theory;
exceptional sets;
Hausdorff dimension;
D O I:
10.1016/j.ffa.2007.01.004
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
De Mathan [B. de Mathan, Approximations diophantiennes dans un corps local, Bull. Soc. Math. France, Suppl. Mem. 21 (1970)] proved that Khintchine's theorem on homogeneous Diophantine approximation has an analogue in the field of formal Laurent series. Kristensen IS. Kristensen, On the well-approximable matrices over a field of formal series, Math. Proc. Cambridge Philos. Soc. 135 (2003) 255-268] extended this metric theorem to systems of linear forms and gave the exact Hausdorff dimension of the corresponding exceptional sets. In this paper, we study the inhomogeneous Diophantine approximation over a field of formal Laurent series, the analogue Khintchine's theorem and Jarnik-Besicovitch theorem are proved. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:361 / 378
页数:18
相关论文