SEMIPARAMETRIC OPTIMAL ESTIMATION WITH NONIGNORABLE NONRESPONSE DATA

被引:10
|
作者
Morikawa, Kosuke [1 ]
Kim, Jae Kwang [2 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Suita, Osaka, Japan
[2] Iowa State Univ, Dept Stat, Ames, IA USA
来源
ANNALS OF STATISTICS | 2021年 / 49卷 / 05期
基金
美国国家科学基金会;
关键词
Estimating functions; identification; incomplete data; not missing at random (NMAR); semiparametric efficient estimation; GOODNESS-OF-FIT; SENSITIVITY ANALYSIS; REGRESSION-MODELS; MISSING DATA; DROP-OUT; IMPUTATION; INDEPENDENCE; INFERENCE;
D O I
10.1214/21-AOS2070
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
When the response mechanism is believed to be not missing at random (NMAR), a valid analysis requires stronger assumptions on the response mechanism than standard statistical methods would otherwise require. Semiparametric estimators have been developed under the parametric model assumptions on the response mechanism. In this paper, a new statistical test is proposed to guarantee model identifiability without using instrumental variable assumption. Furthermore, we develop optimal semiparametric estimation for parameters such as the population mean. Specifically, we propose two semiparametric optimal estimators that do not require any model assumptions other than the response mechanism. Asymptotic properties of the proposed estimators are discussed. An extensive simulation study is presented to compare with some existing methods. We present an application of our method using Korean labor and income panel survey data.
引用
收藏
页码:2991 / 3014
页数:24
相关论文
共 50 条
  • [41] Bayesian semiparametric modeling of response mechanism for nonignorable missing data
    Shonosuke Sugasawa
    Kosuke Morikawa
    Keisuke Takahata
    [J]. TEST, 2022, 31 : 101 - 117
  • [42] A Bayesian model averaging approach to analyzing categorical data with nonignorable nonresponse
    Janicki, Ryan
    Malec, Donald
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 57 (01) : 600 - 614
  • [43] Imputation and Estimation under Nonignorable Nonresponse in Household Surveys with Missing Covariate Information
    Pfeffermann, Danny
    Sikov, Anna
    [J]. JOURNAL OF OFFICIAL STATISTICS, 2011, 27 (02) : 181 - 209
  • [44] Bayesian semiparametric modeling of response mechanism for nonignorable missing data
    Sugasawa, Shonosuke
    Morikawa, Kosuke
    Takahata, Keisuke
    [J]. TEST, 2022, 31 (01) : 101 - 117
  • [45] The analysis of categorical case-control data subject to nonignorable nonresponse
    Baker, SG
    [J]. BIOMETRICS, 1996, 52 (01) : 362 - 369
  • [46] Estimation of regression models for the mean of repeated outcomes under nonignorable nonmonotone nonresponse
    Vansteelandt, Stijn
    Rotnitzky, Andrea
    Robins, James
    [J]. BIOMETRIKA, 2007, 94 (04) : 841 - 860
  • [47] No News Is News: Nonignorable Nonresponse in Roll-Call Data Analysis
    Rosas, Guillermo
    Shomer, Yael
    Haptonstahl, Stephen R.
    [J]. AMERICAN JOURNAL OF POLITICAL SCIENCE, 2015, 59 (02) : 511 - 528
  • [48] Nonignorable Nonresponse Imputation and Rotation Group Bias Estimation on the Rotation Sample Survey
    Choi, Bo-Seung
    Kim, Dae Young
    Kim, KeeWhan
    Park, You Sung
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2008, 21 (03) : 361 - 375
  • [49] Match Bias or Nonignorable Nonresponse? Improved Imputation and Administrative Data In the CPS Asec
    Hokayem, Charles
    Raghunathan, Trivellore
    Rothbaum, Jonathan
    [J]. JOURNAL OF SURVEY STATISTICS AND METHODOLOGY, 2022, 10 (01) : 81 - 114
  • [50] Mixtures of semiparametric varying coefficient models for longitudinal data with nonignorable dropout
    Zhi-qiang Li
    Liu-gen Xue
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2010, 26 : 125 - 132