Bayesian semiparametric modeling of response mechanism for nonignorable missing data

被引:0
|
作者
Sugasawa, Shonosuke [1 ]
Morikawa, Kosuke [2 ]
Takahata, Keisuke [3 ]
机构
[1] Univ Tokyo, Ctr Spatial Informat Sci, Kashiwa, Chiba, Japan
[2] Osaka Univ, Grad Sch Engn Sci, Toyonaka, Osaka, Japan
[3] Keio Univ, Grad Sch Econ, Mitato Ku, Tokyo, Japan
基金
日本学术振兴会;
关键词
Longitudinal data; Markov Chain Monte Carlo; Multiple imputation; Polya-gamma distribution; Penalized spline;
D O I
10.1007/s11749-021-00774-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Statistical inference with nonresponse is quite challenging, especially when the response mechanism is nonignorable. In this case, the validity of statistical inference depends on untestable correct specification of the response model. To avoid the misspecification, we propose semiparametric Bayesian estimation in which an outcome model is parametric, but the response model is semiparametric in that we do not assume any parametric form for the nonresponse variable. We adopt penalized spline methods to estimate the unknown function. We also consider a fully nonparametric approach to modeling the response mechanism by using radial basis function methods. Using Polya-gamma data augmentation, we developed an efficient posterior computation algorithm via Gibbs sampling in which most full conditional distributions can be obtained in familiar forms. The performance of the proposed method is demonstrated in simulation studies and an application to longitudinal data.
引用
收藏
页码:101 / 117
页数:17
相关论文
共 50 条
  • [1] Bayesian semiparametric modeling of response mechanism for nonignorable missing data
    Shonosuke Sugasawa
    Kosuke Morikawa
    Keisuke Takahata
    TEST, 2022, 31 : 101 - 117
  • [2] A model specification test for semiparametric nonignorable missing data modeling
    Tang, Cheng Yong
    ECONOMETRICS AND STATISTICS, 2024, 30 : 124 - 132
  • [3] A SEMIPARAMETRIC APPROACH FOR ANALYZING NONIGNORABLE MISSING DATA
    Xie, Hui
    Qian, Yi
    Qu, Leming
    STATISTICA SINICA, 2011, 21 (04) : 1881 - 1899
  • [4] A Semiparametric Estimation of Mean Functionals With Nonignorable Missing Data
    Kim, Jae Kwang
    Yu, Cindy Long
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (493) : 157 - 165
  • [5] Semiparametric inverse propensity weighting for nonignorable missing data
    Shao, Jun
    Wang, Lei
    BIOMETRIKA, 2016, 103 (01) : 175 - 187
  • [6] Semiparametric estimation of copula models with nonignorable missing data
    Guo, Feng
    Ma, Wei
    Wang, Lei
    JOURNAL OF NONPARAMETRIC STATISTICS, 2020, 32 (01) : 109 - 130
  • [7] SEMIPARAMETRIC ESTIMATING EQUATIONS INFERENCE WITH NONIGNORABLE MISSING DATA
    Zhao, Puying
    Tang, Niansheng
    Qu, Annie
    Jiang, Depeng
    STATISTICA SINICA, 2017, 27 (01) : 89 - 113
  • [8] Bayesian semiparametric models for nonignorable missing mechanisms in generalized linear models
    Kalaylioglu, Z. I.
    Ozturk, O.
    JOURNAL OF APPLIED STATISTICS, 2013, 40 (08) : 1746 - 1763
  • [9] Bayesian estimation of the multidimensional graded response model with nonignorable missing data
    Fu, Zhi-Hui
    Tao, Jian
    Shi, Ning-Zhong
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2010, 80 (11) : 1237 - 1252
  • [10] Bayesian semiparametric approach to quantile nonlinear dynamic factor analysis models with mixed ordered and nonignorable missing data
    Tuerde, Mulati
    Tang, Niansheng
    STATISTICS, 2022, 56 (05) : 1166 - 1192