A high-temperature heat pump for compressed heat energy storage applications: Design, modeling, and performance

被引:19
|
作者
Hassan, Abdelrahman H. [1 ,2 ]
Corberan, Jose M. [1 ]
Ramirez, Miguel [3 ]
Trebilcock-Kelly, Felipe [3 ]
Paya, Jorge [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Invest Ingn Energet, Valencia 46022, Spain
[2] Zagazig Univ, Fac Engn, Mech Power Engn Dept, Zagazig 44519, Egypt
[3] Tecnalia Res & Innovat, Energy & Environm Div, Area Anardi 5, Azpeitia 20730, Guipuzkoa, Spain
基金
欧盟地平线“2020”;
关键词
Pumped thermal energy storage; High-temperature heat pump; Modeling; Subcooling; Superheat; Refrigerants; WASTE HEAT; CONDENSATION; EU;
D O I
10.1016/j.egyr.2022.08.201
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The current paper presents the design and performance of a high-temperature heat pump (HTHP) integrated in an innovative, sensible, and latent heat storage system. The HTHP has been designed to work between a heat source from 40 to 100 ? and a heat sink above 130 ?. An initial refrigerant analysis has revealed that R-1233zd(E) is the best candidate to meet the required performance and environmental considerations. The first part of this paper deals with the sizing and selection of the main components while discussing the challenges and working limits. A numerical model is also presented and validated. The second part of the paper is dedicated to develop parametric studies and performance maps under different operating conditions. The results show that the current HTHP, at a source temperature of 80 ?, consumes from 3.23 to 9.88 kW by varying the compressor's speed from 500 to 1500 rpm. Heat production is achieved in the form of latent heat (7.40 to 21.59 kW) and sensible heat (from 6.35 to 17.94 kW). The heating coefficient of performance (COPHTHP) is around 4. (c) 2022 Published by Elsevier Ltd.
引用
收藏
页码:10833 / 10848
页数:16
相关论文
共 50 条
  • [21] Performance of the very high-temperature heat pump with low GWP working fluids
    Mikielewicz, Dariusz
    Wajs, Jan
    ENERGY, 2019, 182 : 460 - 470
  • [22] Thermal performance of a packed bed reactor for a high-temperature chemical heat pump
    Kato, Y
    O-shima, T
    Yoshizawa, Y
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2001, 25 (07) : 577 - 589
  • [23] DESIGN EVALUATION OF A SMALL HIGH-TEMPERATURE REACTOR FOR PROCESS HEAT APPLICATIONS
    BARNERT, H
    SINGH, J
    NUCLEAR ENGINEERING AND DESIGN, 1988, 109 (1-2) : 245 - 251
  • [24] A CONCEPT FOR AN INNOVATIVE HIGH-TEMPERATURE HEAT-PUMP
    JETER, SM
    ENERGY, 1987, 12 (02) : 163 - 170
  • [25] Investigation of a High-Temperature Heat Pump for Heating Purposes
    Bellos, Evangelos
    Tsimpoukis, Dimitrios
    Lykas, Panagiotis
    Kitsopoulou, Angeliki
    Korres, Dimitrios N.
    Vrachopoulos, Michail Gr.
    Tzivanidis, Christos
    APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [26] Kinetic feasibility of a chemical heat pump for heat utilization of high-temperature processes
    Kato, Y
    Harada, N
    Yoshizawa, Y
    APPLIED THERMAL ENGINEERING, 1999, 19 (03) : 239 - 254
  • [27] The potential of wastewater heat and exergy: Decentralized high-temperature recovery with a heat pump
    Meggers, Forrest
    Leibundgut, Hansjurg
    ENERGY AND BUILDINGS, 2011, 43 (04) : 879 - 886
  • [28] Gas-solid thermochemical heat storage reactors for high-temperature applications
    Pan, Z. H.
    Zhao, C. Y.
    ENERGY, 2017, 130 : 155 - 173
  • [29] CONSIDERATIONS FOR THE DESIGN OF A HIGH-TEMPERATURE PARTICLE REOXIDATION REACTOR FOR EXTRACTION OF HEAT IN THERMOCHEMICAL ENERGY STORAGE SYSTEMS
    Babiniec, Sean M.
    Miller, James E.
    Ambrosini, Andrea
    Stechel, Ellen
    Coker, Eric N.
    Loutzenhiser, Peter G.
    Ho, Clifford K.
    PROCEEDINGS OF THE ASME 10TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2016, VOL 1, 2016,
  • [30] DESIGN AND PERFORMANCE ANALYSIS OF MOTOR PHASE CHANGE HEAT STORAGE HEAT PUMP SYSTEM FOR NEW ENERGY VEHICLES
    Du, Meng
    THERMAL SCIENCE, 2024, 28 (2B): : 1287 - 1294