The potential of wastewater heat and exergy: Decentralized high-temperature recovery with a heat pump

被引:115
|
作者
Meggers, Forrest [1 ]
Leibundgut, Hansjurg [1 ]
机构
[1] ETH, Fac Architecture, Inst Technol Architecture, Bldg Syst Grp, CH-8093 Zurich, Switzerland
关键词
Heat recovery; Water heating; Hot water; Wastewater; Heat pump; Exergy;
D O I
10.1016/j.enbuild.2010.12.008
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
There is a large potential in the heat losses from the wastewater leaving a building. We present a novel concept for recovering this heat. instead of recovering it in a mixed state, the recovery immediately after use is evaluated. This allows the exploitation of the higher temperatures found at the points of warm water usage. By integrating a heat pump to utilize this heat, we can produce a higher temperature heat supply while maintaining a low temperature-lift requirement. This leads to the possibility of directly regenerating the hot water supply through wastewater heat recovery. The concept is a result of research into low exergy building systems, and is part of the IEA ECBCS Annex 49. We have modeled the annual performance of two different system scenarios, which result in a potential average annual coefficient of performance (COP) of over 6. The first scenario supplies up to 4400 kWh of heat for all hot water events with only 790 kWh of electricity, while the second scenario regenerated directly the hot water supply just for bathroom fixtures at 2400 kWh with just 410 kWh of energy. This is a significant reduction in the demand for hot water supply of a building compared to most modern installations. (C) 2010 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:879 / 886
页数:8
相关论文
共 50 条
  • [1] Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery
    Mateu-Royo, Carlos
    Navarro-Esbri, Joaquin
    Mota-Babiloni, Adrian
    Moles, Francisco
    Amat-Albuixech, Marta
    APPLIED ENERGY, 2019, 253
  • [2] Advanced Exergy and Exergoeconomic Analysis of Cascade High-Temperature Heat Pump System for Recovery of Low-Temperature Waste Heat
    Hu, Xiaowei
    Shi, Chenyang
    Liu, Yong
    Fu, Xingyu
    Ma, Tianyao
    Jin, Mingsen
    ENERGIES, 2024, 17 (05)
  • [3] Development and experimental validation of a high-temperature heat pump for heat recovery and building heating
    Wang Kai
    Cao Feng
    Xing Ziwen
    ENERGY AND BUILDINGS, 2009, 41 (07) : 732 - 737
  • [4] A high-temperature hybrid absorption-compression heat pump for waste heat recovery
    Liu, Changchun
    Jiang, Yingchun
    Han, Wei
    Kang, Qilan
    ENERGY CONVERSION AND MANAGEMENT, 2018, 172 : 391 - 401
  • [5] HIGH-TEMPERATURE HEAT-PUMP
    PITT, R
    BRENNSTOFF-WARME-KRAFT, 1983, 35 (1-2): : 30 - 35
  • [6] Energy, exergy, economic, and environmental analysis of a high-temperature heat pump steam system
    Ma, Xudong
    Du, Yanjun
    Lei, Biao
    Wu, Yuting
    INTERNATIONAL JOURNAL OF REFRIGERATION, 2024, 160 : 423 - 436
  • [7] Travelling-wave thermoacoustic high-temperature heat pump for industrial waste heat recovery
    Yang, Zhao
    Zhuo, Yang
    Ercang, Luo
    Yuan, Zhou
    ENERGY, 2014, 77 : 397 - 402
  • [8] Thermodynamic analysis of a novel high-temperature heat pump for low-grade waste heat recovery
    Mateu-Royo, Carlos
    Navarro-Esbrí, Joaquín
    Mota-Babiloni, Adrián
    Molés, Francisco
    Amat-Albuixech, Marta
    Refrigeration Science and Technology, 2019, 2019-August : 4494 - 4501
  • [9] Alloy selections in high-temperature metal hydride heat pump systems for industrial waste heat recovery
    Ge, Y. T.
    Lang, P. Y.
    ENERGY REPORTS, 2022, 8 : 3649 - 3660
  • [10] Graphic analysis of energy and exergy combined systems of solar collector and high-temperature heat pump
    Shoeibi, Habib
    Mehrpooya, Mehdi
    Assaerh, Ehsanolah
    Izadi, Mohsen
    Pourfayaz, Fathollah
    CHEMICAL PAPERS, 2023, 77 (02) : 1149 - 1164