On the number of quintic fields

被引:5
|
作者
Kable, AC [1 ]
Yukie, A
机构
[1] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
[2] Tohoku Univ, Inst Math, Sendai, Miyagi 9808578, Japan
关键词
D O I
10.1007/s00222-004-0391-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the number of quintic number fields whose discriminant does not exceed X in absolute value is bounded by a constant times X1+epsilon for any epsilon > 0. This may be compared with the conjecture that the number of such fields is asymptotic to a constant times X as X tends to infinity.
引用
收藏
页码:217 / 259
页数:43
相关论文
共 50 条
  • [41] On the Pythagoras number of function fields of curves over number fields
    Pop, Florian
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2023, 257 (02) : 561 - 574
  • [42] On the Pythagoras number of function fields of curves over number fields
    Florian Pop
    [J]. Israel Journal of Mathematics, 2023, 257 : 561 - 574
  • [43] CRITERION FOR CLASS NUMBER OF A PURE QUINTIC FIELD TO BE DIVISIBLE BY 5
    IIMURA, K
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1977, 292 : 201 - 210
  • [44] Bifurcations of limit cycles in equivariant quintic planar vector fields
    Zhao, Liqin
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 422 (01) : 352 - 375
  • [45] The conductor of Lecacheux's parametric family of cyclic quintic fields
    Silvester, Alan K.
    Spearman, Blair K.
    Williams, Kenneth S.
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2007, 38 (04): : 231 - 240
  • [46] Regulators and class numbers of an infinite family of quintic function fields
    Lee, Jungyun
    Lee, Yoonjin
    [J]. ACTA ARITHMETICA, 2018, 185 (02) : 107 - 125
  • [47] Normal integral bases of Lehmer's cyclic quintic fields
    Hashimoto, Yu
    Aoki, Miho
    [J]. RAMANUJAN JOURNAL, 2024, 65 (02): : 985 - 1010
  • [48] The p-Rank of Tame Kernels of Pure Quintic Fields
    Li, Yuanyuan
    Zhou, Haiyan
    Deng, Fei
    Wu, Xia
    [J]. ALGEBRA COLLOQUIUM, 2018, 25 (02) : 277 - 284
  • [49] Calculation of the class number of number fields
    Louboutin, S
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1995, 171 (02) : 455 - 467
  • [50] Statistics of Number Fields and Function Fields
    Venkatesh, Akshay
    Ellenberg, Jordan S.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL II: INVITED LECTURES, 2010, : 383 - 402