Normal integral bases of Lehmer's cyclic quintic fields

被引:0
|
作者
Hashimoto, Yu [1 ]
Aoki, Miho [1 ]
机构
[1] Shimane Univ, Interdisciplinary Fac Sci & Engn, Dept Math, Matsue, Shimane 6908504, Japan
来源
RAMANUJAN JOURNAL | 2024年 / 65卷 / 02期
关键词
Normal integral basis; Cyclic quintic field; Gaussian period; Tamely ramified extension; FAMILY;
D O I
10.1007/s11139-024-00875-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_n$$\end{document} be a tamely ramified cyclic quintic field generated by a root of Emma Lehmer's parametric polynomial. We give all normal integral bases for Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_n$$\end{document} only by the roots of the polynomial, which is a generalization of the work of Lehmer in the case that n4+5n3+15n2+25n+25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n<^>4+5n<^>3+15n<^>2+25n+25$$\end{document} is prime number, and Spearman-Willliams in the case that n4+5n3+15n2+25n+25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n<^>4+5n<^>3+15n<^>2+25n+25$$\end{document} is square free.
引用
收藏
页码:985 / 1010
页数:26
相关论文
共 50 条