An algebraic multigrid based shifted-Laplacian preconditioner for the Helmholtz equation

被引:32
|
作者
Airaksinen, Tuomas
Heikkola, Erkki
Pennanen, Anssi
Toivanen, Jari
机构
[1] Univ Jyvaskyla, Dept Math Informat Technol, FI-40014 Jyvaskyla, Finland
[2] Numerola Oy, FI-40101 Jyvaskyla, Finland
[3] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
基金
芬兰科学院;
关键词
algebraic multigrid method; finite element method; GMRES; Helmholtz equation; preconditioner;
D O I
10.1016/j.jcp.2007.05.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A preconditioner defined by an algebraic multigrid cycle for a damped Helmholtz operator is proposed for the Helmholtz equation. This approach is well suited for acoustic scattering problems in complicated computational domains and with varying material properties. The spectral properties of the preconditioned systems and the convergence of the GMRES method are studied with linear, quadratic, and cubic finite element discretizations. Numerical experiments are performed with two-dimensional problems describing acoustic scattering in a cross-section of a car cabin and in a layered medium. Asymptotically the number of iterations grows linearly with respect to the frequency while for lower frequencies the growth is milder. The proposed preconditioner is particularly effective for low-frequency and mid-frequency problems. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1196 / 1210
页数:15
相关论文
共 50 条
  • [31] An algebraic multigrid preconditioner for a class of singular M-matrices
    Virnik, Elena
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (05): : 1982 - 1991
  • [32] A WKB Based Preconditioner for the 1D Helmholtz Wave Equation
    Green, D. L.
    D'Azevedo, E.
    Batchelor, D. B.
    Bertelli, N.
    Lau, C.
    Barnett, R. L.
    Marin, J. F. Caneses
    23RD TOPICAL CONFERENCE ON RADIOFREQUENCY POWER IN PLASMAS, 2020, 2254
  • [33] A Robust Multilevel Preconditioner Based on a Domain Decomposition Method for the Helmholtz Equation
    Lu, Peipei
    Xu, Xuejun
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (01) : 291 - 311
  • [34] A Parallel Wavelet-Based Algebraic Multigrid Black-Box Solver and Preconditioner
    Pereira, Fabio Henrique
    Nabeta, Silvio Ikuyo
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [35] Comparison of Algebraic Multigrid Preconditioners for Solving Helmholtz Equations
    Chen, Dandan
    Huang, Ting-Zhu
    Li, Liang
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [36] A black-box multigrid preconditioner for the biharmonic equation
    Silvester, DJ
    Mihajlovic, MD
    BIT NUMERICAL MATHEMATICS, 2004, 44 (01) : 151 - 163
  • [37] A Black-Box Multigrid Preconditioner for the Biharmonic Equation
    David J. Silvester
    Milan D. Mihajlović
    BIT Numerical Mathematics, 2004, 44 : 151 - 163
  • [38] A note on algebraic multigrid methods for the discrete weighted Laplacian
    Capizzano, Stefano Serra
    Tablino-Possio, Cristina
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (05) : 1290 - 1298
  • [39] An improved sweeping domain decomposition preconditioner for the Helmholtz equation
    Stolk, Christiaan C.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2017, 43 (01) : 45 - 76
  • [40] Algebraic Multigrid Preconditioner for a Finite Element Method in TM Electromagnetic Scattering
    Kim, K.
    Leem, K. H.
    Pelekanos, G.
    Song, M.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2009, 11 (04) : 597 - 605