An algebraic multigrid based shifted-Laplacian preconditioner for the Helmholtz equation

被引:32
|
作者
Airaksinen, Tuomas
Heikkola, Erkki
Pennanen, Anssi
Toivanen, Jari
机构
[1] Univ Jyvaskyla, Dept Math Informat Technol, FI-40014 Jyvaskyla, Finland
[2] Numerola Oy, FI-40101 Jyvaskyla, Finland
[3] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
基金
芬兰科学院;
关键词
algebraic multigrid method; finite element method; GMRES; Helmholtz equation; preconditioner;
D O I
10.1016/j.jcp.2007.05.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A preconditioner defined by an algebraic multigrid cycle for a damped Helmholtz operator is proposed for the Helmholtz equation. This approach is well suited for acoustic scattering problems in complicated computational domains and with varying material properties. The spectral properties of the preconditioned systems and the convergence of the GMRES method are studied with linear, quadratic, and cubic finite element discretizations. Numerical experiments are performed with two-dimensional problems describing acoustic scattering in a cross-section of a car cabin and in a layered medium. Asymptotically the number of iterations grows linearly with respect to the frequency while for lower frequencies the growth is milder. The proposed preconditioner is particularly effective for low-frequency and mid-frequency problems. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1196 / 1210
页数:15
相关论文
共 50 条
  • [21] Two Schemes to Improve the Implementation of the Aggregation Based Algebraic Multigrid Preconditioner
    Wu, Jianping
    Yin, Fukang
    Peng, Jun
    Yang, Jinhui
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELING AND SIMULATION (AMMS 2017), 2017, 153 : 31 - 35
  • [22] A wavelet-based algebraic multigrid preconditioner for sparse linear systems
    Pereira, Fabio Henrique
    Lopes Verardi, Sergio Luis
    Nabeta, Silvio Ikuyo
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (02) : 1098 - 1107
  • [23] Comparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equation
    Erlangga, YA
    Vuik, C
    Oosterlee, CW
    APPLIED NUMERICAL MATHEMATICS, 2006, 56 (05) : 648 - 666
  • [24] Comparison between the shifted-Laplacian preconditioning and the controllability methods for computational acoustics
    Airaksinen, Tuomas
    Monkola, Sanna
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (06) : 1796 - 1802
  • [25] ADDITIVE SWEEPING PRECONDITIONER FOR THE HELMHOLTZ EQUATION
    Liu, Fei
    Ying, Lexing
    MULTISCALE MODELING & SIMULATION, 2016, 14 (02): : 799 - 822
  • [26] Absolute-Value Based Preconditioner for Complex-Shifted Laplacian Systems
    Lin, Xuelei
    Li, Congcong
    Hon, Sean
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 103 (02)
  • [27] A double-sweeping preconditioner for the Helmholtz equation
    Eslaminia, Mehran
    Guddati, Murthy N.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 314 : 800 - 823
  • [28] A TIME-DOMAIN PRECONDITIONER FOR THE HELMHOLTZ EQUATION
    Stolk, Christiaan C.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (05): : A3469 - A3502
  • [29] A Robust Multilevel Preconditioner Based on a Domain Decomposition Method for the Helmholtz Equation
    Peipei Lu
    Xuejun Xu
    Journal of Scientific Computing, 2019, 81 : 291 - 311
  • [30] A BLOCK-DIAGONAL ALGEBRAIC MULTIGRID PRECONDITIONER FOR THE BRINKMAN PROBLEM
    Vassilevski, Panayot S.
    Villa, Umberto
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (05): : S3 - S17