An algebraic multigrid based shifted-Laplacian preconditioner for the Helmholtz equation

被引:32
|
作者
Airaksinen, Tuomas
Heikkola, Erkki
Pennanen, Anssi
Toivanen, Jari
机构
[1] Univ Jyvaskyla, Dept Math Informat Technol, FI-40014 Jyvaskyla, Finland
[2] Numerola Oy, FI-40101 Jyvaskyla, Finland
[3] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
基金
芬兰科学院;
关键词
algebraic multigrid method; finite element method; GMRES; Helmholtz equation; preconditioner;
D O I
10.1016/j.jcp.2007.05.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A preconditioner defined by an algebraic multigrid cycle for a damped Helmholtz operator is proposed for the Helmholtz equation. This approach is well suited for acoustic scattering problems in complicated computational domains and with varying material properties. The spectral properties of the preconditioned systems and the convergence of the GMRES method are studied with linear, quadratic, and cubic finite element discretizations. Numerical experiments are performed with two-dimensional problems describing acoustic scattering in a cross-section of a car cabin and in a layered medium. Asymptotically the number of iterations grows linearly with respect to the frequency while for lower frequencies the growth is milder. The proposed preconditioner is particularly effective for low-frequency and mid-frequency problems. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1196 / 1210
页数:15
相关论文
共 50 条
  • [1] A multigrid-based shifted Laplacian preconditioner for a fourth-order Helmholtz discretization
    Umetani, N.
    MacLachlan, S. P.
    Oosterlee, C. W.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2009, 16 (08) : 603 - 626
  • [2] A hybrid shifted Laplacian multigrid and domain decomposition preconditioner for the elastic Helmholtz equations
    Treister, Eran
    Yovel, Rachel
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 497
  • [3] Multigrid-based 'shifted-Laplacian' preconditioning for the time-harmonic elastic wave equation
    Rizzuti, G.
    Mulder, W. A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 317 : 47 - 65
  • [4] On the Minimal Shift in the Shifted Laplacian Preconditioner for Multigrid to Work
    Cocquet, Pierre-Henri
    Gander, Martin J.
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXII, 2016, 104 : 137 - 145
  • [5] Shifted Laplacian RAS Solvers for the Helmholtz Equation
    Kimn, J.-H. (jung-han.kimn@sdstate.edu), 1600, Springer Verlag, Tiergartenstrasse 17, Heidelberg, D-69121, Germany (91):
  • [6] Local Fourier analysis of the complex shifted Laplacian preconditioner for Helmholtz problems
    Cools, Siegfried
    Vanroose, Wim
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (04) : 575 - 597
  • [7] ALGEBRAIC MULTILEVEL PRECONDITIONER FOR THE HELMHOLTZ EQUATION IN HETEROGENEOUS MEDIA
    Bollhoefer, Matthias
    Grote, Marcus J.
    Schenk, Olaf
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (05): : 3781 - 3805
  • [8] Accelerating the shifted Laplace preconditioner for the Helmholtz equation by multilevel deflation
    Sheikh, A. H.
    Lahaye, D.
    Ramos, L. Garcia
    Nabben, R.
    Vuik, C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 322 : 473 - 490
  • [9] A novel multigrid based preconditioner for heterogeneous Helmholtz problems
    Erlangga, Y
    Oosterlee, C
    Vuik, C
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 27 (04): : 1471 - 1492
  • [10] HOW LARGE A SHIFT IS NEEDED IN THE SHIFTED HELMHOLTZ PRECONDITIONER FOR ITS EFFECTIVE IN VERSION BY MULTIGRID ?
    Cocquet, Pierre-Henri
    Gander, Martin J.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (02): : A438 - A478