Foliations of globally hyperbolic spacetimes by CMC hypersurfaces

被引:13
|
作者
Thierry, BA
Béguin, F
Zeghib, A
机构
[1] Ecole Normale Super Lyon, UMPA, CNRS, UMR 5669, F-69364 Lyon, France
[2] Univ Paris 11, Math Lab, UMR 8628, F-91405 Orsay, France
关键词
D O I
10.1016/S1631-073X(03)00019-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We announce the following result: every maximal globally hyperbolic 3-dimensional spacetime with compact Cauchy surface, and with nonpositive constant curvature admits a unique time function whose fibers are constant mean curvature surfaces. We discuss the extension of this result in higher dimensions.
引用
收藏
页码:245 / 250
页数:6
相关论文
共 50 条
  • [41] RELATIVE CAUCHY EVOLUTION FOR THE VECTOR POTENTIAL ON GLOBALLY HYPERBOLIC SPACETIMES
    Benini, Marco
    MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS, 2015, 3 (02) : 177 - 210
  • [42] On Maxwell’s Equations on Globally Hyperbolic Spacetimes with Timelike Boundary
    Claudio Dappiaggi
    Nicolò Drago
    Rubens Longhi
    Annales Henri Poincaré, 2020, 21 : 2367 - 2409
  • [43] Do link polynomials detect causality in globally hyperbolic spacetimes?
    Allen, Samantha
    Swenberg, Jacob H.
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (03)
  • [44] Globally hyperbolic spacetimes can be defined without the 'causal' condition
    Hounnonkpe, R. A.
    Minguzzi, E.
    CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (19)
  • [45] Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes
    Bernal, AN
    Sánchez, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 257 (01) : 43 - 50
  • [46] On Maxwell's Equations on Globally Hyperbolic Spacetimes with Timelike Boundary
    Dappiaggi, Claudio
    Drago, Nicolo
    Longhi, Rubens
    ANNALES HENRI POINCARE, 2020, 21 (07): : 2367 - 2409
  • [47] Smoothness of Time Functions and the Metric Splitting of Globally Hyperbolic Spacetimes
    Antonio N. Bernal
    Miguel Sánchez
    Communications in Mathematical Physics, 2005, 257 : 43 - 50
  • [48] Existence and Topological Uniqueness of Compact CMC Hypersurfaces with Boundary in Hyperbolic Space
    Alias, Luis J.
    Lopez, Rafael
    Ripoll, Jaime
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (04) : 2177 - 2187
  • [49] Existence and Topological Uniqueness of Compact CMC Hypersurfaces with Boundary in Hyperbolic Space
    Luis J. Alías
    Rafael López
    Jaime Ripoll
    Journal of Geometric Analysis, 2013, 23 : 2177 - 2187
  • [50] On a Gromoll-Meyer type theorem in globally hyperbolic stationary spacetimes
    Biliotti, Leonardo
    Mercuri, Francesco
    Piccione, Paolo
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2008, 16 (02) : 333 - 393