Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes

被引:210
|
作者
Bernal, AN [1 ]
Sánchez, M [1 ]
机构
[1] Univ Granada, Fac Ciencias, Dpto Geometria & Topol, E-18071 Granada, Spain
关键词
Neural Network; Statistical Physic; Complex System; Nonlinear Dynamics; Quantum Computing;
D O I
10.1007/s00220-005-1346-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The folk questions in Lorentzian Geometry which concerns the smoothness of time functions and slicings by Cauchy hypersurfaces, are solved by giving simple proofs of: ( a) any globally hyperbolic spacetime ( M, g) admits a smooth time function T whose levels are spacelike Cauchy hyperfurfaces and, thus, also a smooth global splitting M = R x S, g = - beta( T, x) dT(2) + (g) over bar T, ( b) if a spacetime M admits a ( continuous) time function t then it admits a smooth ( time) function T with timelike gradient del T on all M.
引用
收藏
页码:43 / 50
页数:8
相关论文
共 50 条
  • [1] Smoothness of Time Functions and the Metric Splitting of Globally Hyperbolic Spacetimes
    Antonio N. Bernal
    Miguel Sánchez
    Communications in Mathematical Physics, 2005, 257 : 43 - 50
  • [2] Globally Hyperbolic Spacetimes as Posets
    Mehdi Sharifzadeh
    Masoud Bahrami Seif Abad
    Mathematical Physics, Analysis and Geometry, 2019, 22
  • [3] Globally Hyperbolic Spacetimes as Posets
    Sharifzadeh, Mehdi
    Abad, Masoud Bahrami Seif
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2019, 22 (04)
  • [4] Causal bubbles in globally hyperbolic spacetimes
    Leonardo García-Heveling
    Elefterios Soultanis
    General Relativity and Gravitation, 2022, 54
  • [6] Abelian Duality on Globally Hyperbolic Spacetimes
    Becker, Christian
    Benini, Marco
    Schenkel, Alexander
    Szabo, Richard J.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 349 (01) : 361 - 392
  • [7] A CLOSURE RESULT FOR GLOBALLY HYPERBOLIC SPACETIMES
    Catino, Giovanni
    Roncoroni, Alberto
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024,
  • [8] Abelian Duality on Globally Hyperbolic Spacetimes
    Christian Becker
    Marco Benini
    Alexander Schenkel
    Richard J. Szabo
    Communications in Mathematical Physics, 2017, 349 : 361 - 392
  • [9] Causal bubbles in globally hyperbolic spacetimes
    Garcia-Heveling, Leonardo
    Soultanis, Elefterios
    GENERAL RELATIVITY AND GRAVITATION, 2022, 54 (12)
  • [10] Green-Hyperbolic Operators on Globally Hyperbolic Spacetimes
    Christian Bär
    Communications in Mathematical Physics, 2015, 333 : 1585 - 1615