Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes

被引:210
|
作者
Bernal, AN [1 ]
Sánchez, M [1 ]
机构
[1] Univ Granada, Fac Ciencias, Dpto Geometria & Topol, E-18071 Granada, Spain
关键词
Neural Network; Statistical Physic; Complex System; Nonlinear Dynamics; Quantum Computing;
D O I
10.1007/s00220-005-1346-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The folk questions in Lorentzian Geometry which concerns the smoothness of time functions and slicings by Cauchy hypersurfaces, are solved by giving simple proofs of: ( a) any globally hyperbolic spacetime ( M, g) admits a smooth time function T whose levels are spacelike Cauchy hyperfurfaces and, thus, also a smooth global splitting M = R x S, g = - beta( T, x) dT(2) + (g) over bar T, ( b) if a spacetime M admits a ( continuous) time function t then it admits a smooth ( time) function T with timelike gradient del T on all M.
引用
收藏
页码:43 / 50
页数:8
相关论文
共 50 条