A representation for solutions of the Sturm-Liouville equation

被引:61
|
作者
Kravchenko, Vladislav V. [1 ]
机构
[1] IPN, CINVESTAV, Dept Math, Unidad Queretaro, Queretaro, Mexico
关键词
Sturm-Liouville problem; pseudoanalytic functions; Vekua equation; Schrodinger equation; Darboux transformation;
D O I
10.1080/17476930802102894
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A representation for the general solution of the equation (pu')' + qu = omega(2)u in terms of a non-trivial solution of (pu'(0))' + qu(0) = 0 is given. This result is obtained with the aid of the theory of pseudoanalytic functions and their relationship to solutions of the stationary two-dimensional Schrodinger equation. The representation has a simple and easily verifiable form and lends itself to numerical computation. Its applications to spectral problems are discussed.
引用
收藏
页码:775 / 789
页数:15
相关论文
共 50 条
  • [21] Representation of solutions for Sturm-Liouville eigenvalue problems with generalized fractional derivative
    Ozarslan, Ramazan
    Bas, Erdal
    Baleanu, Dumitru
    CHAOS, 2020, 30 (03)
  • [22] A SPECIFIC STURM-LIOUVILLE DIFFERENTIAL EQUATION
    Tanriverdi, Tanfer
    THERMAL SCIENCE, 2019, 23 : S47 - S56
  • [23] Conformable fractional Sturm-Liouville equation
    Allahverdiev, Bilender P.
    Tuna, Huseyin
    Yalcinkaya, Yuksel
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (10) : 3508 - 3526
  • [24] A generalisation of the Sturm-Liouville type equation
    Lusternik, L
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1937, 15 : 235 - 238
  • [25] A Neumann series of Bessel functions representation for solutions of Sturm-Liouville equations
    Kravchenko, Vladislav V.
    Torba, Sergii M.
    CALCOLO, 2018, 55 (01)
  • [26] Multiple Solutions for a Second-Order Impulsive Sturm-Liouville Equation
    Xie, Jingli
    Luo, Zhiguo
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [28] Smoothness and approximative properties of solutions of the singular nonlinear Sturm-Liouville equation
    Muratbekov, M. B.
    Muratbekov, M. M.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2020, 100 (04): : 113 - 124
  • [29] Representation of the Solution for Fractional Sturm-Liouville Problem
    Bas, Erdal
    Metin, Funda
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [30] Sturm-Liouville theory, asymptotics, and the Schrodinger equation
    Pearson, DB
    SPECTRAL THEORY AND COMPUTATIONAL METHODS OF STURM-LIOUVILLE PROBLEMS, 1997, 191 : 301 - 312