On a Canonical Form for Maxwell Equations and Convergence of Finite Element Schemes for a Vlasov-Maxwell System

被引:0
|
作者
Asadzadeh, M. [1 ,2 ]
机构
[1] Chalmers, Dept Math, SE-41296 Gothenburg, Sweden
[2] Univ Gothenburg, SE-41296 Gothenburg, Sweden
关键词
Vlasov-Maxwell; canonical form; finite element; stability; convergence; DISCONTINUOUS GALERKIN METHODS; STREAMLINE DIFFUSION METHODS; NAVIER-STOKES EQUATIONS; FOKKER-PLANCK SYSTEM; CONSERVATION-LAWS;
D O I
10.1080/00411450.2014.922102
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is a swift introduction to the nature of governing laws involved in the Maxwell equations. We then approximate a "one and one-half" dimensional relativistic Vlasov-Maxwell (VM) system using streamline diffusion finite element method. In this geometry d'Alembert representation for the fields functions guarantees the existence of a unique solution of the Maxwell equations. The VM system is then approximated using the streamline diffusion finite element method. In this part we derive some stability inequalities and optimal a priori error estimates due to the maximal available regularity of the exact solution.
引用
收藏
页码:336 / 351
页数:16
相关论文
共 50 条
  • [41] A sharp stability criterion for the Vlasov-Maxwell system
    Lin, Zhiwu
    Strauss, Walter A.
    INVENTIONES MATHEMATICAE, 2008, 173 (03) : 497 - 546
  • [42] Quantized tensor networks for solving the Vlasov-Maxwell equations
    Ye, Erika
    Loureiro, Nuno F.
    JOURNAL OF PLASMA PHYSICS, 2024, 90 (03)
  • [43] Solving Vlasov-Maxwell Equations by Using Hamiltonian Splitting
    Li, Yingzhe
    He, Yang
    Sun, Yajuan
    Niesen, Jitse
    Qin, Hong
    Liu, Jian
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [44] High order moment closure for Vlasov-Maxwell equations
    Yana Di
    Zhenzhong Kou
    Ruo Li
    Frontiers of Mathematics in China, 2015, 10 : 1087 - 1100
  • [45] Solving the Vlasov-Maxwell equations using Hamiltonian splitting
    Li, Yingzhe
    He, Yang
    Sun, Yajuan
    Niesen, Jitse
    Qin, Hong
    Liu, Jian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 396 : 381 - 399
  • [46] A STABILITY RESULT FOR THE RELATIVISTIC VLASOV-MAXWELL SYSTEM
    KRUSE, KO
    REIN, G
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1992, 121 (02) : 187 - 203
  • [47] CONCENTRATING SOLUTIONS OF THE RELATIVISTIC VLASOV-MAXWELL SYSTEM
    Ben-Artzi, Jonathan
    Calogero, Simone
    Pankavich, Stephen
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2019, 17 (02) : 377 - 392
  • [48] The Darwin approximation of the relativistic Vlasov-Maxwell system
    Bauer, S
    Kunze, M
    ANNALES HENRI POINCARE, 2005, 6 (02): : 283 - 308
  • [49] A TOY MODEL FOR THE RELATIVISTIC VLASOV-MAXWELL SYSTEM
    Ben-Artzi, Jonathan
    Pankavich, Stephen
    Zhang, Junyong
    KINETIC AND RELATED MODELS, 2022, 15 (03) : 341 - 354
  • [50] The Darwin Approximation of the Relativistic Vlasov-Maxwell System
    Sebastian Bauer
    Markus Kunze
    Annales Henri Poincaré, 2005, 6 : 283 - 308