On a Canonical Form for Maxwell Equations and Convergence of Finite Element Schemes for a Vlasov-Maxwell System

被引:0
|
作者
Asadzadeh, M. [1 ,2 ]
机构
[1] Chalmers, Dept Math, SE-41296 Gothenburg, Sweden
[2] Univ Gothenburg, SE-41296 Gothenburg, Sweden
关键词
Vlasov-Maxwell; canonical form; finite element; stability; convergence; DISCONTINUOUS GALERKIN METHODS; STREAMLINE DIFFUSION METHODS; NAVIER-STOKES EQUATIONS; FOKKER-PLANCK SYSTEM; CONSERVATION-LAWS;
D O I
10.1080/00411450.2014.922102
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is a swift introduction to the nature of governing laws involved in the Maxwell equations. We then approximate a "one and one-half" dimensional relativistic Vlasov-Maxwell (VM) system using streamline diffusion finite element method. In this geometry d'Alembert representation for the fields functions guarantees the existence of a unique solution of the Maxwell equations. The VM system is then approximated using the streamline diffusion finite element method. In this part we derive some stability inequalities and optimal a priori error estimates due to the maximal available regularity of the exact solution.
引用
收藏
页码:336 / 351
页数:16
相关论文
共 50 条
  • [21] Perturbative variational formulation of the Vlasov-Maxwell equations
    Brizard, Alain J.
    PHYSICS OF PLASMAS, 2018, 25 (11)
  • [22] Hamiltonian time integrators for Vlasov-Maxwell equations
    He, Yang
    Qin, Hong
    Sun, Yajuan
    Xiao, Jianyuan
    Zhang, Ruili
    Liu, Jian
    PHYSICS OF PLASMAS, 2015, 22 (12)
  • [23] Comment on "Hamiltonian splitting for the Vlasov-Maxwell equations"
    Qin, Hong
    He, Yang
    Zhang, Ruili
    Liu, Jian
    Xiao, Jianyuan
    Wang, Yulei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 297 : 721 - 723
  • [24] Nonlinear relativistic gyrokinetic Vlasov-Maxwell equations
    Brizard, AJ
    Chan, AA
    PHYSICS OF PLASMAS, 1999, 6 (12) : 4548 - 4558
  • [25] Periodic equilibria of the Vlasov-Maxwell system
    Attico, N
    Pegoraro, F
    PHYSICS OF PLASMAS, 1999, 6 (03) : 767 - 770
  • [26] Periodic equilibrium of the Vlasov-Maxwell system
    Attico, N.
    Pegoraro, F.
    Physics of Plasmas, 1999, 6 (03):
  • [27] Solving Vlasov-Maxwell equations in singular geometries
    Assous, Franck
    Ciarlet, Patrick, Jr.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 79 (04) : 1078 - 1085
  • [28] Convergence of hp-Streamline Diffusion Method for Vlasov-Maxwell System
    Asadzadeh, M.
    Kowalczyk, P.
    Standar, C.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2019, 48 (07) : 263 - 279
  • [29] VLASOV-MAXWELL OPERATORS IN SELF-ADJOINT FORM
    MASON, DP
    AUSTRALIAN JOURNAL OF PHYSICS, 1973, 26 (03): : 301 - 314
  • [30] Variational principle for nonlinear gyrokinetic Vlasov-Maxwell equations
    Brizard, AJ
    PHYSICS OF PLASMAS, 2000, 7 (12) : 4816 - 4822